FLUID FLOW AND LIQUID LEVEL SWITCHES

CONTROLLERS
CHEMICAL FEED PUMP
LIQUID LEVEL PUMP UP/PUMP DOWN PUMP EMERGENCY SHUT DOWN

WETTED MATERIALS
BRASS, STAINLESS STEEL, HASTELLOY ${ }^{\circledR}$ C., TITANIUM
NORYL® ${ }^{\circledR}$, FORTRON ${ }^{\circledR}$, TEFLON ${ }^{\circledR}$, EPDM, VITON ${ }^{\circledR}$

OPERATIONAL INFORMATION

TECHNICAL APPLICATION ASSISTANCE

In depth technical information to help you select the optimum HARWIL product for your particular application is as close as your telephone and fax machine.

- PHONE: (805) 988-6800, FAX (805) 988-6804
- Our person to person order desk is open 8:00 am - 4:30 pm (Pacifc Time), Monday through Friday.
- We answer the telephone with people experienced in taking your order for standard products.
- We provide technical appliation assistance.
- We can modify standard units for special applications.
- We will respond to your after hours message at the beginning of our next business day.

EMERGENCY DELIVERIES

Our 60 year history of supplying support items such as level controllers, fluid flow and liquid level switches to a broad spectrum of industries has impressed on us the importance of fast delivery of emergency orders to keep our customers "on line." To this end we:

- Attempt to keep reasonable numbers of all standard models in stock, i.e. physically on our "emergency shelf" for instantaneous delivery of small orders.
- We have shipped orders received by 9:00 AM Pacific time that same day.

ORIGIN OF PRODUCTS

The majority of the products listed in this catalog are conceived, designed, developed, manufactured and marketed by HARWIL Corporation in Oxnard, CA.

BACKGROUND

HARWIL Corporation was formed in 1956. Electromechanical fluid flow and liquid level switches were among our initial product lines and they continue to be widely used today.

TRADEMARKS

Teflon ${ }^{\circledR}$ is a registered trademark of DuPont. Viton ${ }^{\circledR}$ is a registered trademark of DuPont Performance Elastomers. Nory ${ }^{\circledR}$ is a registered trademark of Sabic Innovative Plastics Holding BV. Fortron ${ }^{\circledR}$ is a registered trademark of Fortron Industries LLC. HASTELLOY ${ }^{\circledR}$ is a registered trademark of Haynes International, Inc.

TABLE OF CONTENTS

FLOW SWITCHES

| Model | Process
 Connection | Pipe Size | Flow Range
 (GPM) | Max.
 Terking | Max.
 Working
 Pressure | Electrical
 Switch | Page |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

LEVEL SWITCHES

Model	Process Connection	On/Off Liquid Differential	Specific Gravity	Max. Working Temp	Max. Working Pressure	Electrical Switch	Page
L-5	1" NPT	~ 1/4"	Cont. adjustable $0.6-1.0+$	$180^{\circ} \mathrm{F}\left(82^{\circ} \mathrm{C}\right)$	300 psi	*SPDT 15A	26
L-5SS	1" NPT	$\approx 1 / 4^{\prime \prime}$	Cont. adjustable 0.6-1.0+	$180^{\circ} \mathrm{F}\left(82^{\circ} \mathrm{C}\right)$	300 psi	*SPDT 15A	
L-8N	1" NPT	$\approx 1 / 4^{\prime \prime}$	Cont. adjustable $0.6-1.5$	$180^{\circ} \mathrm{F}\left(82^{\circ} \mathrm{C}\right)$	75 psi	*SPDT 15A	28
L-8CR	1" NPT	~ 1/4"	Cont. adjustable 0.6-1.5	$200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right)$	75 psi	*SPDT 15A	
L-21N	11/4" NPT	1",2,3" or 5"	0.7 Minimum	$180^{\circ} \mathrm{F}\left(82^{\circ} \mathrm{C}\right)$	200 psi	SPDT 15A	30
L-21VCR	11/4" NPT	$1 ", 2,3$ or $5^{\prime \prime}$	0.7 Minimum	$200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right)$	250 psi	SPDT 15A	
L-30N	1" NPT	$\approx 1 / 4^{\prime \prime}$	0.8 Minimum	$180^{\circ} \mathrm{F}\left(82^{\circ} \mathrm{C}\right)$	75 psi	*SPDT 15A	32
L-30CR	1" NPT	$\approx 1 / 4^{\prime \prime}$	0.7 Minimum	$200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right)$	100 psi	*SPDT 15A	
L-40N	1/4" NPT	$\approx 1 / 4^{\prime \prime}$	0.7-0.9	$180^{\circ} \mathrm{F}\left(82^{\circ} \mathrm{C}\right)$	200 psi	SPST or SPDT, 50 or 3 watt	34
L-40VCR	1/4" NPT	$\approx 1 / 4^{\prime \prime}$	0.7-0.9	$200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right)$	250 psi	SPST or SPDT, 50 or 3 watt	

Model	Type	Features	Page
CF-112N	Chemical feed pump controller with lights.	Stand-alone interface module automatically actuates a chemical feed pump when primary bulk fluid begins to flow.	36
CF-12	Chemical Feed Pump Controller for $3 / 4$ inch to 2 inch pipe. Turns on Chemical feed pump when the water or any fluid starts to flow.	Includes both "Switched" and "Always-On" recepticles for controling any device such as a Chemical Feed Pump, UV or Ozone system. A DPDT (Normally Open (NO) and Normally Closed (NC) Version is available for controlling a secondary device such as an alarm. Model available with 2 (1G) or 4 (2G) recepticles.	38
CF-8	Chemical Feed Pump Controller for 1 inch to 6 inch pipe. Turns on Chemical feed pump when the water starts to flow. Ideal for residential and commercial water treatment or commercial irrigation.	Includes both "Switched" and "Always-On" recepticles for controling any device such as a Chemical Feed Pump, UV or Ozone system. A DPDT (Normally Open (NO) and Normally Closed (NC) Version is available for controlling a secondary device such as an alarm. Model available with 2 (1G) or 4 (2G) recepticles.	41
LC-1	Liquid Level Control - Two (2) point pump up/pump down control module.	Any 2 Harwil level switches can be combined with the LC-1 to provide infinitely variable level differential.	42
SDC-101	Pump Run Dry Protection - Pump automatic shut-down control module.	Monitors output of pump and shuts pump off if flow is below set point. Prevents pumps from running dry.	44
APPENDICES			
Title			Page
GENERAL INFORMATION			3
PRODUCT/COMPONENT BILLING \& RETURN TERMS			6
WARRANTY			7
CHEMICAL RESISTANCE CHART FOR VARIOUS PUMP MATERIALS			48

HARWIL CORPORATION PRODUCT/ COMPONENT BILLING \& RETURN TERMS

Ownership of all products and components is transferred from Harwil to the purchasing entity at the time and place of initial delivery of subject products and components to the transporting carrier (UPS, USPS, or FedEx) Harwil will make its best effort to follow up, monitor, and trace shipment of all items indicated above, but cannot guarantee delivery and cannot assume any liability for any damages, labor costs or delays incidental thereto.

Non-Credit Terms - Cash, C.O.D. or VISA/AMEX/ MasterCard

Credit Terms - Net 30 days on approved credit
Credit Approval - Allow 2 WEEKS for approval
F.O.B. - Oxnard, CA

Invoices will be dated the day of shipment. All accounts are due and payable in terms stated on the invoice.

Claims: If product and/or component shortage, breakage or discrepancy is found, advise us at once in writing. No claims honored after 20 days from date of shipment.

Returns: No credit will be allowed for goods returned without an approved Returned Merchandise Authorization (RMA) number.

A restocking fee of 20% will be charged for merchandise returned unused and in new condition.

Finance Charges: After 30 days, a finance charge of 1.5% (18% per annum) will be charged on all past-due accounts. A reminder statement will be sent after an account is 60 days past due. After 90 days, a second statement will be sent, incurring a $\$ 5.00$ follow-up service charge. All additional statements and telephone calls will be billed at $\$ 5.00$ each.

Delinquent Invoices: An overdue invoice (60 days or more) or exceeding written credit limit will require holding delivery of current and future purchase orders until either or both conditions are corrected. An invoice that is 90 days delinquent will be mailed a final 10 day notice. Response requires payment or contact with our accounting department for special payment arrangements. If we receive no response, Harwil will assume the customer does not intend to honor the debt and the account will be turned over to our collection agency, which could effect subject credit rating. Collection fees and related costs will be added to the original invoice plus other charges as listed above.

We appreciate your interest in our products and strive to provide you with dependable products that satisfy your requirements. We do not have the financial resources to act as a bank or lending institution to companies that do not pay their invoices in a timely manner. If you experience payment difficulties, we will be happy to work with you to arrange a mutually satisfactory payment schedule. To do so, please contact Accounts Receivable by phone at (805) 988-6800 or by fax (805) 988-6804.

All Harwil Corporation ("HARWIL") products are manufactured using new materials and components. Our products meet the applicable performance and materials
specifications indicated in our current Specifications Sheets and Parts List. HARWIL endeavors to obtain its materials and components from American Companies.

DOMINANCE OF HARWIL LIMITED EXPRESS WARRANTY

Each user MUST make appropriate analysis and tests to determine the suitability of the HARWIL product for the intended use prior to purchase.
HARWIL warrants that all HARWIL products will be free from defects in material and workmanship for a period of one year from the date of original shipment. This Warranty shall be LIMITED to the replacement and reconditioning of our products and parts. HARWIL reserves the right and sole discretion to modify or change the composition, design and appearance of its products at anytime.

THIS WARRANTY SHALL BE IN LIEU OF ALL WARRANTIES OF MERCHANTABILITY AND OF ALL WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE RELATING TO HARWIL PRODUCTS AND PARTS. BUYER'S SOLE REMEDY SHALL BE REPLACEMENT OR RECONDITIONING AS SET FORTH HEREIN.

HARWIL SHALL INCUR NO OBLIGATIONS HEREUNDER AND NO LIABILITY IN THE EVENT OF (1) BUYER NOT FULFILLING ITS RESPONSIBILITIES; INCLUDING AS SET FORTH HEREIN; (2) NEGLECT, ALTERATION OR IMPROPER PRODUCT USE, INCLUDING USE WITH NON-COMPATIBLE DEVICES OR CHEMICALS; OR (3) REPAIR BY ANOTHER COMPANY OR PERSON THAN HARWIL.

ANY LAWSUIT RELATING TO THIS LIMITED EXPRESS WARRANTY MUST BE COMMENCED WITHIN ONE YEAR OF THE DATE THE LAWSUIT ACCRUES.

HARWIL provides NO WARRANTY and ASSUMES NO RESPONSIBILITY for corrosive attack on any material, component or design features associated with any of its products.

Corrosion resistance information listed in HARWIL specification sheets, information sheets and product brochures is
solely for general background information. This information table has been compiled from literature published by various material suppliers and by equipment manufacturers who use these materials in their products. Inasmuch as these data are based on tests by entities over which HARWIL has no control, HARWIL DOES NOT GUARANTEE AND DOES NOT ACCEPT ANY RESPONSIBILITY FOR THE ACCURACY OF SUCH THIRD PARTY TESTING. When using the table, please remember that in any given case several factors such as concentration, temperature, degrees of agitation and presence of impurities influence the rate of corrosion. The information table is intended, in a general way, to rate materials for resistance to chemicals which contain their usual impurities and for types of equipment in common use. Ratings should be used only as a general tool to first approximation of your material requirements rather than as the final answer.

- When in doubt, test materials before installation.
- After installation, follow up with preventative maintenance and periodic inspection.

Designed for extreme, long-term reliability.

Detects and signals flow change.
Continuously adjustable while in operation.
6 interchangeable orifices plus 2:1 continuous switch adjustment with each orifice.

Calibrated independent of line pressure and temperature.
Maintains calibration limits when subjected to reasonable line hydraulic hammer or surge pulses.
Super-simple maintenance and checkout for personnel using a standard test meter.
Model Q-1 can also be fitted with a SPDT gold cross-bar switch for computer/PLC interface.

DPDT model available per request.
 MAGNETIC

KEY FEATURES	
Flow Range	0.12-8 GPM (0.45-30.4 L/m)
Working Temp	$180^{\circ} \mathrm{F}\left(82^{\circ} \mathrm{C}\right.$) Maximum
Working Pressure	300 psig ($2,068 \mathrm{kPa}$)
Process Connection	1/2" NPT
Electrical Switch	SPDT 15A or Dry Circuit
Enclosure	NEMA 4 / IP 66
TYPICAL USES	
Monitoring flow of coolants and fluids supplied to:	
Air Conditioning Systems	Plastic Molding Equipment
Cooling in Data Centers	Scrubbers
Diodes, SCRs, Triacs, etc.	Spot Welders
High Power Transistors	Transformers
Fluid Blending Systems	Vacuum Systems
Other Uses:	
Starting Back-up Pumps	Oil Supply to Bearing \& Gear Systems
Monitor Filter Clogging	Metal Fabrication Systems

※ TYPICAL WORKING FLUIDS	
Filtered Sewage Water	Oils
Glycols	Potable Water
Hydrocarbons	

PRODUCT DIAGRAM

541 Kinetic Drive
Oxnard, CA 93030
WEIGHT: 3.5 lb
1.59 kg

MODEL SELECTION CHART			
Flow Range (Water calibrated at $70^{\circ} \mathrm{F} / 21^{\circ} \mathrm{C}$) Accuracy $\pm 10 \%$			
ORIFICE \#	CONTINUOUS SWITCH POINT ADJUSTMENT		
1	0.12 to 0.25 GPM		
2	0.25 to 0.50 GPM		
3	0.50 to 1 GPM		
4	1 to 2 GPM		
5	2 to 4 GPM		
6	4 to 8 GPM		
Note: Maximum recommended flow rate for each orifice is four (4) times the upperend of the adjustment range.			
ELECTRICAL CONNECTION			
GROMMET	CABLE O.D.	DIAGRAM	
A	0.25 "		
AA	0.30 "		
B	$0.37{ }^{\prime \prime}$		
C	0.50 "		
CONDUIT FITTINGS			
F(STR) - 0.5" straight		F90 ${ }^{\circ}-\left(0.5^{\prime \prime} 90^{\circ}\right)$	

出 TECHNICAL SPECIFICATIONS

HYSTERESIS (Δ FLOW RATE TO ACTIVATE/DEACTIVATE SWITCH)

$\approx 5 \%$ at upper end of flow range
$\approx 25 \%$ at lower end of flow range

DIFFERENTIAL PRESSURE DROPS ACROSS UNIT

Under normal operating conditions:
≈ 1.0 psig at upper end of flow range
$\approx 5.0 \mathrm{psig}$ at lower end of flow range

WORKING LINE PRESSURE

 300 psi max.WORKING TEMPERATURE
$180^{\circ} \mathrm{F}$ max.
($250^{\circ} \mathrm{F}$ model available)

Q-1 MATERIALS:

Body: Brass (working fluid "sees" red brass, 316 stainless steel, phosphor bronze, ${ }^{\text {Nory }}{ }^{\circledR}$ (PPO) (10% glass fibers) and EPDM elastomer seal
Gasket: Cork/Buna blend
Optional Seal: Viton ${ }^{\circledR}$

ELECTRICAL SWITCH CHARACTERISTICS

SPDT
$15 \mathrm{~A}, 1 / 2 \mathrm{hp} @ 125$ or 250VAC
½A @ 125VDC, 1/4A @ 250VDC 5A @ 125VAC (tungsten lamp load)

10,000,000 operations, median
(Switch may be overloaded to 20A @ 125 or 250VAC for a minimum of 20,000 operations.)

\triangle INSTALLATION DIMENSIONS

- Installation drawing and a numbered parts list is supplied with each unit.
- Special one-day delivery is available.
Designed for
extreme, long-term
reliability.

Detects and signals flow change.
Continuously adjustable while in operation.

Four (4) individual Paddle options plus continuous adjustment provides wide operating range.

For use in particle contaminated fluids.

Maintains calibration limits when subjected to reasonable line hydraulic hammer or surge pulses.
Super-simple maintenance and checkout for personnel using a standard test meter.
DPDT model available per request.

DPT modal available per request.

CE MAGNETIC

KEY FEATURES	
Flow Range	4-70 GPM (15.14-265 L/m)
Working Temp	$180^{\circ} \mathrm{F}\left(82^{\circ} \mathrm{C}\right)$ Maximum
Working Pressure	300 psig ($2,068 \mathrm{kPa}$)
Process Connection	1" NPT
Electrical Switch	SPDT 15A or Dry Circuit
Enclosure	NEMA 4 / IP 66
TYPICAL USES	

Monitoring flow of coolants and fluids supplied to:

Air Conditioning Systems	Plastic Molding Equipment
Cooling in Data Centers	Scrubbers
Diodes, SCRs, Triacs, etc.	Spot Welders
Fluid Blending Systems	Transformers
High Power Transistors	Vacuum Systems
Other Uses:	
Monitor Filter Clogging	Starting Back-up Pumps

₹ TYPICAL WORKING FLUIDS

Glycols	Oils
Hydrocarbons	Potable Water

PRODUCT DIAGRAM

| MODEL SELECTION CHART | | |
| :---: | :---: | :---: | :---: |
| Flow Range (Water calibrated at $70^{\circ} \mathrm{F} / 21^{\circ} \mathrm{C}$) Accuracy $\pm 10 \%$ | | |
| ORIFICE/PADDLE | | |
| \# | CONTINUOUS SWITCH POINT ADJUSTMENT | |
| RANGE | | |

MPLE PART NUMB	ERS					
OPTION 1: Q-4E	/ 1	/ B	OPTION 2:	Q-4E	/ 3	/ F
BASE MODEL			BASE MODEL			
ORIFICE/PADDLE \#			ORIFICE/PADDLE \#			
GROMMET SIZE			112" FLEXIB	COND	IT FIT	NG

少 TECHNICAL SPECIFICATIONS

HYSTERESIS (\triangle FLOW RATE TO ACTIVATE/DEACTIVATE SWITCH)

$\approx 5 \%$ at upper end of flow range
$\approx 25 \%$ at lower end of flow range

DIFFERENTIAL PRESSURE DROPS ACROSS UNIT

Under normal operating conditions:
≈ 1.0 psig at upper end of flow range
≈ 5.0 psig at lower end of flow range

Q-4E MATERIALS:

Body: Brass (working fluid "sees" red brass, 316 stainless steel, phosphor bronze and EPDM elastomer seal Gasket: Cork/Buna blend Optional Seal: Viton ${ }^{\circledR}$

ELECTRICAL SWITCH CHARACTERISTICS

SPDT
15A, $1 / 2 \mathrm{hp} @ 125$ or 250VAC 1/2A @ 125VDC, 1/4A @ 250VDC 5A @ 125VAC (tungsten lamp load)

Model Q-4E can also be fitted with a SPDT Gold Cross Bar Switch for computer/PLC interface.

10,000,000 Operations Median Switch may be overloaded to 20A @ 125 or 250VAC for a minimum of 20,000 operations.

\triangle INSTALLATION DIMENSIONS

Designed for extreme, long-term
reliability.
Detects and signals flow change. Continuously adjustable while in operation.

For use in particle contaminated fluids.

Multiple quick change paddles (and continuous spring adjustment) provide an incredibly wide operating range of flow rates and viscosities.

Use with an intrinsically safe relay allows Model Q-5 to be used in hazardous areas.

Maintains calibration limits when subjected to reasonable line hydraulic hammer or surge pulses.

Calibrated independent of line pressure and temperature.

DPDT model available per request.

KEY FEATURES	
Flow Range	5-102,000+ GPM (18.9-386.1 kL/m)
Working Temp	$180^{\circ} \mathrm{F}\left(82^{\circ} \mathrm{C}\right)$ Maximum
Working Pressure	300 psig (2,068 kPa)
Process Connection	1" NPT
Electrical Switch	SPDT 15A or Dry Circuit
Enclosure	NEMA 4 / IP 66

TYPICAL USES

Monitoring flow of coolants and fluids supplied to:

Air Conditioning Systems	Plastic Molding Equipment
Boilers	Scrubbers
Cooling in Data Centers	Spot Welders
Diodes, SCRs, Triacs, etc.	Transformers
Fluid Blending Systems	Vacuum Systems

High Power Transistors
Other Uses:
Fire Sprinkler Flow Alarms Municipal Water Supply Systems
Oil Supply to Bearing \& Gear Systems

玉 TYPICAL WORKING FLUIDS	
Filtered Sewage Water	Glycols
Hydrocarbons	Potable Water

PRODUCT DIAGRAM

541 Kinetic Drive
Oxnard, CA 93030
www.harwil.com
WEIGHT: 3.5 lb.

1.59 kg

PADDLE (PADDLE/STRIP) NUMBER

(○) $\begin{aligned} & \text { NO. } 1: 0 . \mathbf{5}^{\prime \prime} \text { DIA } \\ & \text { ALI PIPE SIZES }\end{aligned}$
All ple sizes

NO. 2: 0.9" DIA
ALL PIPE SIZES

MODEL SELECTION CHART				
Flow Range (Water calibrated at $70^{\circ} \mathrm{F} / 21^{\circ} \mathrm{C}$) Accuracy $\pm 10 \%$				
PIPE SIZE	CONTINUOUS SWITCH POINT ADJUSTMENT RANGE (GPM)		$\underset{\#}{\text { PIVOT SHAFT }}$	PADDLE \#
	Red Brass	316 Stainless Steel		
$1 "$	5 to 15	10 to 20	2	2
	12 to 36	20 to 60	2	1
$11 / 2{ }^{\prime \prime}$	7 to 21	14 to 42	3	3
	10 to 30	20 to 60	3	2
	20 to 75	30 to 90	3	1
$2{ }^{\prime \prime}$	14 to 42	21 to 63	3	4
	20 to 60	30 to 90	3	2
	50 to 150	60 to 180	3	1
$3{ }^{\prime \prime}$	27 to 81	45 to 135	5	4
	45 to 135	75 to 225	5	2
	110 to 330	130 to 390	5	1
$6{ }^{\prime \prime}$	65 to 195	103 to 309	5	6
	80 to 240	125 to 375	5	5
	190 to 570	300 to 900	5	2
	450 to 1,350	550 to 1,650	5	1

Call our customer support for a wider range of pipe sizes. (805) 988-6800

ELECTRICAL CONNECTION				
GROMMET	CABLE O.D.	DIAGRAM		
A	0.25"			
AA	0.30 "			
B	$0.37{ }^{\prime \prime}$			
C	0.50 "			
CONDUIT FITTINGS				
F(STR) - 0.5" straight			F90 ${ }^{-}\left(0.5{ }^{\prime \prime} 90^{\circ}\right)$	

Q-5 MATERIALS:

Body, shaft and drag disks/strips: Brass and 316 stainless steel Working fluid "sees" red brass (phosphor bronze) and EPDM elastomer seal
Gasket: Cork/Buna blend Optional Seal: Viton ${ }^{\circledR}$

Q-5SS MATERIALS:

Body, shaft and drag disks/strips: 316 stainless steel Working fluid "sees" 316 stainless and Viton ${ }^{\circledR}$ seal. Gasket: Teflon ${ }^{\circledR}$

INSTALLATION DIMENSIONS

TOP VIEW

Model Q-5 can also be fitted with a SPDT Gold Cross Bar Switch for computer/PLC interface.

SIDE VIEW

FRONT VIEW

- Installation drawing and a numbered parts list is supplied with each unit.
- Special one-day delivery is available.

During normal operations flow switches increase efficiency, save time and money by the continuous monitoring of deviations from optimum flow rates. During emergency conditions flow switches signal system malfunctions such as line breakage, pump failure, incorrect valve opening or closing, pipe, valve or filter clogging, etc.

Designed for long-term reliability and

 chemical resistance.Detects and signals flow change.
Particle contamination resistance is provided by a single convolute elastomeric seal which is continually flushed by working fluid flow.

Continuously adjustable while in operation.

Responds to flow only, independent of line pressure, temperature, environment
Super-simple maintenance and checkout for personnel using a standard test meter.

PRODUCT DIAGRAM

541 Kinetic Drive
Oxnard, CA 93030
WEIGHT: 0.5 lb .

0.23 kg

www.harwil.com

* TECHNICAL SPECIFICATIONS

HYSTERESIS (\triangle FLOW RATE TO ACTIVATE/DEACTIVATE SWITCH)
$\approx 10 \%$ at upper end of flow range
$\approx 30 \%$ at lower end of flow range
DIFFERENTIAL PRESSURE DROPS ACROSS UNIT
Under normal operating conditions:

$$
\begin{aligned}
& \approx 1 "-3 " \text { pipe, less than } 0.5 \mathrm{psi} \\
& \approx 4 "-10 " \text { pipe, negligible }
\end{aligned}
$$

WORKING LINE PRESSURE:

50 psi max., operating @ $180^{\circ} \mathrm{F}$
100 psi max. non-operating @ $180^{\circ} \mathrm{F}$
Pressure over 50 psi can affect the switch point range
ELECTRICAL SWITCH CHARACTERISTICS
SPDT
10,000,000 Operations Median
$15 \mathrm{~A}, 1 / 2 \mathrm{hp} @ 125$ or 250 VAC
1/2A @ 125VDC
(tungsten lamp load)
Model Q-8N can also be fitted with a SPDT Gold Cross Bar Switch for computer/PLC interface.

Q-8N (NORYL ${ }^{\circledR}$)

WORKING TEMPERATURE: $180^{\circ} \mathrm{F}$ @ ambient pressure WETTED MATERIALS: Body and Bushing: Nory ${ }^{\circledR}$ (PPO) (10% glass fibers); Shaft: 316 stainless steel and EPDM Elastomer Seal Optional Filter Boot: EPDM (Viton ${ }^{\circledR}$ available by special order)

Q-8CR (FORTRON ${ }^{\circledR}$)

WORKING TEMPERATURE: 200${ }^{\circ} \mathrm{F}$ max. continuous WETTED MATERIALS: Body and bushing: Fortron ${ }^{\oplus}$ (PPS) (40\% glass fibers); Shaft: HASTELLOY ${ }^{\circledR} \mathrm{C}$ and Viton ${ }^{\circledR}$ Elastomer Seal Optional Filter Boot: Viton ${ }^{\circledR}$ (EPDM available by special order)

\triangle INSTALLATION DIMENSIONS

During normal operations flow switches increase efficiency, save time and money by the continuous monitoring of deviations from optimum flow rates. During emergency conditions flow switches signal system malfunctions such as line breakage, pump failure, incorrect valve opening or closing, pipe, valve or filter clogging, etc.		CE cilus magneic
	KEY FEATURES	
	Flow Range	5-80 GPM (18-302 L/m)
	Working Temp	$180^{\circ} \mathrm{F}\left(82^{\circ} \mathrm{C}\right)$ Maximum
	Working Pressure	50 psig (344 kPa) @ 180 ${ }^{\circ} \mathrm{F}$
	Process Connection	$1{ }^{1 / N P T}$
Designed for long-term reliability and chemical resistance.	Electrical Switch	SPDT, DPDT, ½hp 15A or Dry Circuit
Detects and signals flow change.	Enclosure	NEMA 6P / IP 67
Responds to flow only, independent of line pressure, temperature, environment Super-simple maintenance and checkout for personnel using a standard test meter.	TYPICAL USES	
	Monitoring fluid flow in:	
	Air Conditioning Systems	Industrial Refrigeration Systems
	Cooling in Data Centers	Pools and Spas
	Chillers	Scrubbers
	Fluid Blending Systems Natural Gas	Water Treatment Systems
	§ TYPICAL WORKING FLUIDS	
	Filtered Sewage Water	Contaminated Ground Water
	Mild Acids	Sulfolane
	Rusty Coolant Water	Sea Water
	Waste Water	Pool Water (low ppm Chlorine)
	Potable Water	RO Water

PRODUCT DIAGRAM

541 Kinetic Drive
Oxnard, CA 93030
WEIGHT: 0.5 lb .

MODEL SELECTION CHART
Flow Range (Water calibrated at $70^{\circ} \mathrm{F} / 21^{\circ} \mathrm{C}$) Accuracy $\pm 10 \%$

PIPE SIZE	NOMINAL ON/OFF SWITCH POINT RANGE (GPM)	SHAFT LENGTH	PADDLE NUMBER
$1{ }^{11}$	5.0-3.0	-	10512
	9.6-7.5	1	2
	18.0-15.4	1	1
$11 / 2^{\prime \prime}$	12.0-9.5	-	10502
	14.2-11.8	2	3
	19.0-13.5	-	10570A
	22.5-19.0	2	2
	34.4-30.4	2	1
2"	19-12	-	10593
	25.8-21.8	2	3
	39.8-33.6	2	2
	58.0-50.8	2	1
$3{ }^{\prime \prime}$	42.4-37.0	3	3
	55.6-49.8	3	2
	80.6-65.2	3	1

Call our customer support for a wider range of pipe sizes. (805) 988-6800
ELECTRICAL CONNECTION

少 TECHNICAL SPECIFICATIONS

HYSTERESIS (Δ FLOW RATE TO ACTIVATE/DEACTIVATE SWITCH)
$\approx 10 \%$ at upper end of flow range
$\approx 30 \%$ at lower end of flow range

DIFFERENTIAL PRESSURE DROPS ACROSS UNIT

Under normal operating conditions:

$$
\begin{aligned}
& \approx 1 \text { "-3" pipe, less than } 0.5 \text { psi } \\
& \approx 4 "-10 " \text { pipe, negligible }
\end{aligned}
$$

WORKING LINE PRESSURE:

50 psi max., operating @ $180^{\circ} \mathrm{F}$
100 psi max. non-operating @ $180^{\circ} \mathrm{F}$
Pressure over 50 psi can affect the switch point range
ELECTRICAL SWITCH CHARACTERISTICS
SPDT, DPDT
10,000,000 Operations Median
15A, $1 / 2 \mathrm{hp} @ 125$ or 250VAC
½A @ 125VDC
(tungsten lamp load)
Model Q-8DS can also be fitted with a SPDT Gold Cross Bar Switch for computer/PLC interface or 25 A micro switch.

Q-8DS (NORYL®)

WORKING TEMPERATURE: $180^{\circ} \mathrm{F}$ @ ambient pressure WETTED MATERIALS: Body and Bushing: Nory ${ }^{\circledR}$ (PPO) (10\% glass fibers); Shaft: 316 stainless steel and Viton ${ }^{\circledR}$ Elastomer Seal

SAMPLE PART NUMBERS

OPTION 1: Q-8DS	/ 1	/ 2	/ B	OPTION 2: Q-8DS	/ 2	/ 3	/ F
BASE MODEL				BASE MODEL			
SHAFT LEN	GTH			SHAFT LEN	GTH		
PADDLE SIZE				PADDLE SIZE			
GROMMET SIZE				12" FIPT			

\triangle INSTALLATION DIMENSIONS

- Installation drawing and a numbered parts list is supplied with each unit.

FLEXIBLE DESIGN:

Model Q-10 is provided with three factory adjustable parameters which provide performance flexibility to meet a multitude of applications:

- Paddle Area
- Paddle Length
- Paddle Stiffness

Responds to fluid flow only, independent of line pressure and temperature.

Maximum flow rate should be no more than five times the close point.
Positive stop eliminates fatigue effects of turbulence, vibration and flow surge on flow detecting element.
Small size and low profile provides easy mounting in crowded installations.
Very low pressure drop - typically less than 1.0 psig at normal flow rate.
Quick response.
Available with NO, NC or SPDT Reed Switch
Switches 5VDC to 240VAC.
Switches resistive and light inductive loads.
Switch employs magnetic coupling.
Send us your special requirements. We will quote a special unit to meet those requirements.

MODEL SELECTION CHART			
Flow Range (Water calibrated at $70^{\circ} \mathrm{F} / 21^{\circ} \mathrm{C}$) Accuracy $\pm 10 \%$			
PIPE SIZE	NOMINAL ON/OFF SWITCH POINT RANGE (GPM)		PADDLE NUMBER
	ON	OFF	
$1 "$	1.3	0.9	1
	4	2	2
$11 / 2 "$	3	2	10691A
	8	4	3
	17	14	4
$2 "$	5	4	10691A
	10	7	5
	16	11	6
$3 "$	12	8	10691A
	22	15	7
	36	25	8
$4 "$	21	14	10691A
	39	27	9
	64	45	10
5"	33	25	10691A
	61	43	11
	100	70	12
$6 "$	48	35	10691A
	88	62	13
	144	101	14
Call our customer support for a wider range of pipe sizes. (805) 988-6800			

SAMPLE PART NUMBER			
Q-10N	/ 13	/ NO	/ 4'
BASE MODEL			
PADDLE \#			
SWITCH OPERATION (NO, NC, OR SPDT)			
POWER CORD LENGTH			

\triangle INSTALLATION DIMENSIONS

- Installation drawing and a numbered parts list is supplied with each unit.
- Special one-day delivery is available.

Model Q-12 is provided with three factory adjustable parameters which provide performance flexibility to meet a multitude of applications:

- Paddle Area
- Paddle Length
- Paddle Stiffness

Maximum flow rate should be no more than five times the close point.
Positive stop eliminates fatigue effects of turbulence, vibration and flow surge on flow detecting element.
Very low pressure drop - typically less than 1.0 psig at normal flow rate.
Small size and low profile provides easy mounting in crowded installations.

Power the driving coil of small ice cube relays as well as some 30A power relays.
Available with NO, NC or SPDT Reed Switch

Switches 5VDC to 240VAC.
Switch employs magnetic coupling.
Send us your special requirements. We will quote a special unit to meet those requirements.

MODEL SELECTION CHART			
Flow Range (Water calibrated at $70^{\circ} \mathrm{F} / 21^{\circ} \mathrm{C}$) Accuracy $\pm 10 \%$			
PIPE SIZE	NOMINAL ON/OFF SWITCH POINT RANGE (GPM)		PADDLE NUMBER
	ON	OFF	
$3 / 4 "$	0.9	0.8	3 (.7SM)*
	3	2	3SM
	11	10	6S
$1 "$	1.1	1.0	3 (.7M)*
	4	3	4S
	6	5	6S
$11 / 2^{\prime \prime}$	2.8	2.5	4 (.7L)*
	13	12	4 S
	16	15	6 M
	21	19	6 S
2"	4.9	4.4	4 (.7L)*
	15	12	4 M
	23	18	4S
	27	22	6M
3 "	11.0	9.9	4 (.7L)*
	33	25	4M
	57	45	4 S
	65	58	6M
	82	78	6S
4"	19.6	17.6	4 (.7L)*
	56	43	4 M
	95	83	4 S
	120	108	6 M
	150	140	6S
5"	30.6	27.5	4 (.7L)*
	92	69	4 M
	150	130	4 S
	180	170	6 M
	230	220	6S
6"	135	95	$4 M^{*}$
	220	180	4 S
	260	220	6 M
	340	310	6S
Call our customer support for a wider range of pipe sizes. (805) 988-6800 ${ }^{*}=$ Requires $3 / 4$ NPT process connection			

Q-12DS

少 TECHNICAL SPECIFICATIONS

ELECTRICAL (REED) SWITCH CHARACTERISTICS

SPNO

Contact Ratings:
AC Voltage (max. switching)
DC Voltage (max. switching)
Current (max. switching) Power (max) (VA, W)

N50	C2
300VAC	$24-30$
350VDC	$24-30$
0.5 A	0.5 A
50 watts	10 watts

OPTIONAL: SPNC or SPDT - 0.2A, 3 watt, 30VAC/VDC.

INDUCTIVE LOADS

Switch contacts have been tested with small relays and 30A J-C relay inductive driving coils at $120 / 240 \mathrm{VAC}$ to 500,000 operations without failure.

Q-12N (NORYL®)

WORKING PRESSURE: 200 psig max. @ $70^{\circ} \mathrm{F}$
WORKING TEMPERATURE: $180^{\circ} \mathrm{F}$ @ ambient pressure WETTED MATERIALS: Body: Nory ${ }^{\circledR}$ (PPO) (10% glass fibers);
Paddle: 316 stainless steel; Seal: Epoxy

Q-12CR (FORTRON ${ }^{\circledR}$)

WORKING PRESSURE: 250 psig max. @ $70^{\circ} \mathrm{F}$
WORKING TEMPERATURE: 200F @ ambient pressure WETTED MATERIALS: Body: Fortron ${ }^{\circledR}$ (PPS) (40% glass fibers);
Paddle: HASTELLOY ${ }^{\circledR}$; Seal: Epoxy

Note: Tee and orifice options available when ordering
NOTE: Model Q-12N employs magnetic coupling between bending blade and switch body. Magnetic particles can accumulate on and around magnetic housing which may affect proper operation. Please conduct appropriate fluid magnetic particle evaluation and operational tests prior to and during installation and use.

ELECTRICAL CONNECTION OPTIONS

OPTION 1

BASIC UNIT SUPPLIED WITH TWO 0.187×0.020 MALE SPADE TERMINALS RECESSED IN $1 / 2^{\prime \prime}$ NPT NIPPLE SECTION.

OPTION 2

BASIC UNIT WITH TWOCONDUCTOR INSTRUMENT CABLE POTTED IN PLACE. PVC TEE OPTIONAL.

OPTION 3

BASIC UNIT W/ DMP TAPERED RUBBER GROMMET ATTACHMENT FOR WATERTIGHT SEAL \& STRAIN RELIEF. PVC TEE OPTIONAL.

OPTION 4

BASIC UNIT WITH 1/2" FLEXIBLE SPIRADUCT PLASTIC CONDUIT \& FITTINGS. ELECTRICAL CABLE NOT SUPPLIED. PVC TEE OPTIONAL.

- Installation drawing and a numbered parts list is supplied with each unit.
- Special one-day delivery is available.

Model Q-15 is the most sensitive paddle type flow switch available. It utilizes Hall Effect technology and is programmed for the highest sensitivity.

Model Q-15 comes standard with 8 conductor modular cable and Cat 3 modular connector. Other cable/connector combinations available upon special order.

Max. flow may be five times normal flow.

Positive stop eliminates fatigue effects of turbulence, vibration and flow surge on flow detecting element.

Very low pressure drop - typically less than 1.0 psig at normal flow rate.

Small size and low profile provides easy mounting in crowded installations.

Switch employs magnetic coupling.

Send us your special requirements. We will quote a special unit to meet those requirements.

SIDE VIEW

TOP VIEW

* TECHNICAL SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

SPNO

Input Voltage
Contact Rating
Switching Voltage
Switching Current
Contact Resistance

8 to 24 vdc

28 vdc max
$1.5 \mathrm{amp}(250 \mathrm{~mA}) \max$
.25 ohms

Q-15N (NORYL®)

WORKING PRESSURE: 200 psig max. @ $70^{\circ} \mathrm{F}$
WORKING TEMPERATURE: $180^{\circ} \mathrm{F}$ @ ambient pressure
WETTED MATERIALS: Body: Nory ${ }^{\circledR}$ (PPO) (10% glass fibers);
Paddle: 316 stainless steel Seal: Epoxy

Q-15CR (FORTRON ${ }^{\circledR}$)
 WORKING PRESSURE: 250 psig max. @ 70우
 WORKING TEMPERATURE: $200^{\circ} \mathrm{F}$ @ ambient pressure
 WETTED MATERIALS: Body: Fortron ${ }^{\circledR}$ (PPS) (40% glass fibers);
 Paddle: 316 HASTELLOY ${ }^{\circledR}$ C; Seal: Epoxy

SAMPLE PART NUMBER

Q-15N	/ 3/4	/ SB	/ 4S	/ 2FT
BASE MODEL				
PROCESS CONNECTION 3/4" NPT				
PIPE SIZE: SB 3/4" TO 1"; LB 11⁄2"+				
PADDLE NUMBER				
LENGTH OF CABLE (FT))				

Note: Tee and orifice options available when ordering.
NOTE: Model Q-15N employs magnetic coupling between bending blade and switch body. Magnetic particles can accumulate on and around magnetic housing which may affect proper operation. Please conduct appropriate fluid magnetic particle evaluation and operational tests prior to and during installation and use.

- Special one-day delivery is available.

THE Q-16 STAINLESS STEEL. MAXIMUM RELIABILITY, MINIMUM COST.
The Q-16 Stainless Steel is the newest addition to Harwil's heavy-duty line of flow switches. The switch is used to signal, start, or stop electronically operated equipment when flow or no-flow conditions occur. The Q-16 Stainless Steel benefits from 40 years of flow switch development experience for

Harwil's elastomeric sealing system is superior to the metal bellows that are subject to metal fatigue and corrosion. This seal system has been field-proven for decades.
The Q-16 Stainless Steel can be used in pipes 1 inch and larger, with set points as low as 4 GPM (15.2 LPM) to over 500 GPM (1,893 LPM) in larger pipe sizes. The Q-16 Stainless Steel uses a 15A SPDT micro switch that can control a $1 / 2$ horsepower motor.

Multiple Quick-Change Paddles
EPDM Seal, Superior To Metal Bellows
Field Adjustable Set Points
Field Adjustable Paddles
Direct Replacement For Most Paddle-Type Flow Switches
Best Flow Sensitivity Among Paddle-Type Flow Switches
Stainless Steel Paddles, Shaft and Body
NEMA 1 Enclosure
Industry-Leading 3 Year Warranty

KEY FEATURES	
Flow Range	4-500 GPM (15-1,893 L/m)
Working Temp	$250{ }^{\circ} \mathrm{F}\left(121^{\circ} \mathrm{C}\right)$ Maximum
Working Pressure	200 psi (1379 kPa)
Process Connection	1" NPT
Electrical Switch	SPDT 15A
Enclosure	NEMA 1 / IP 10 (Not for use in hazardous locations)
TYPICAL USES	

For use in
Boilers Cooling Towers

Chillers Water Treatment

PRODUCT DIAGRAM

MODEL SELECTION CHART				
Flow Range (Water calibrated at $70^{\circ} \mathrm{F} / 21^{\circ} \mathrm{C}$) Accuracy $\pm 10 \%$				
PIPE SIZE	SWITCHPOINT RANGE (GPM)			
	MIN. ADJUST.		MAX. ADJUST.	
	ON	OFF	ON	OFF
$1 "$	4	2	8	7
$11 / 2^{\prime \prime}$	7	5	13	11
2"	12	7	27	26
$21 / 2^{\prime \prime}$	18	12	35	32
$3 "$	27	19	52	49
4"	63	50	123	120
5"	125	100	238	232
6"	190	158	350	338
Call our customer support for a wider range of pipe sizes. (805) 988-6800				

HYSTERESIS (\triangle FLOW RATE TO ACTIVATE/DEACTIVATE SWITCH)

$\approx 10 \%$ at upper end of flow range
$\approx 30 \%$ at lower end of flow range

DIFFERENTIAL PRESSURE DROPS ACROSS UNIT

Under normal operating conditions:

$$
\begin{aligned}
& \approx 1 \text { "-3" pipe, less than } 1 \text { psi } \\
& \approx 4 \text { "-48" pipe, negligible }
\end{aligned}
$$

Q-16 MATERIALS:

Body and shaft: Brass and 304 stainless steel; Paddles: 316 stainless steel; Seal: EPDM elastomer

Q-16SS MATERIALS:

Body and shaft: 304 stainless steel; Paddles: 316 stainless steel; Seal: EPDM elastomer

ELECTRICAL SWITCH CHARACTERISTICS

SPDT
$15 \mathrm{~A}, 1 / 2 \mathrm{hp} @ 125$ or 250 VAC
$1 / 2 \mathrm{~A} @ 125 \mathrm{VDC}$
¼ @ 250VDC
10,000,000 Operations Median
\triangle INSTALLATION DIMENSIONS

FRONT VIEW

- Installation drawing and a numbered parts list is supplied with each unit.
- Special one-day delivery is available.

LEVEL SWITCH

SPECIFIC GRAVITY COMPENSATING.

Featuring continuously adjustable float buoyancy control to allow use in fluids with specific gravity down to 0.6 .

Continuous buoyancy control allows switch activation at oil/water interface.

May be used in hazardous areas when used with intrinsically safe relays.

Consult factory for other dual-component fluid interface systems.
Horizontal Mounting Only
High/Low Liquid Level Alarm
Solenoid Valve On/Off Control

KEY features	
Working Fluid Specific Gravity	Adjustable between 0.6 \& 1.0+
Working Temp	$180^{\circ} \mathrm{F}\left(82^{\circ} \mathrm{C}\right)$ Maximum
Working Pressure	300 psi (2,068 kPa)
Process Connection	1" NPT
Electrical Switch	SPDT 15A or Dry Circuit
Enclosure	NEMA 4 / IP 66

TYPICAL USES

For use in particle contaminated fluids, such as:

Seawater	Contaminated Ground Water
Sewage	Rusty Coolant Water

※ TYPICAL WORKING FLUIDS

Alcohols	Machine Cutting Oils
Glycols	Slurries
Soap Solutions	Water

PRODUCT DIAGRAM

DOUBLE POLE, DOUBLE THROW (DPDT) MODEL LD-5 ALSO AVAILABLE

2 single pole, double throw (SPDT) switches provide DPDT action. 2 physically ganged but electronically independent switches provide a combination of 2 isolated AC or DC circuits; high or low voltage circuits; or power or gold cross bar computer/PLC dry circuits.

Electrical connection is made directly to switch terminals with standard spade "Quick Connects" supplied with each unit.

ELECTRICAL CONNECTION				
GROMMET	CABLE O.D.	DIAGRAM		
A	0.25"			
AA	0.30 "			
B	$0.37{ }^{\prime \prime}$			
C	0.50 "			
CONDUIT FITTINGS				
F(STR) - 0.5" straight			F90 - $\left(0.5^{\prime \prime} 90^{\circ}\right)$	

少 TECHNICAL SPECIFICATIONS

HYSTERESIS (\triangle LIQUID LEVEL TO ACTIVATE/DEACTIVATE SWITCH) ~ $1 / 4$ " travel

WORKING FLUID SPECIFIC GRAVITY RANGE

Adjustable between 0.6 and 1.0+

WORKING PRESSURE	WORKING TEMPERATURE
300 psi max. continuous	$180^{\circ} \mathrm{F}$ max. continuous.

WETTED MATERIALS (RED BRASS)

Body and Bushing: Red brass Float Shaft: Phosphor bronze Hardware: 316 stainless steel

Float: 304 stainless steel Seal: EPDM Gasket: Cork/Nitrile blend

WETTED MATERIALS (STAINLESS STEEL)

Body, Bushing, Float Shaft,
Hardware: 316 stainless steel Float: 304 stainless steel

Float Coating: Everlube 6108 PTFE
Seal: Viton ${ }^{\oplus}$ or FKM
Gasket: Teflon ${ }^{\circledR}$ or PTFE

ELECTRICAL SWITCH CHARACTERISTICS

SPDT
15 A, $1 / 2 \mathrm{hp} @ 125$ or 250VAC
½A @ $125 \mathrm{VDC}, 1 / 4 \mathrm{~A} @ 250 \mathrm{VDC}$

5A @ 125VAC (Tungsten lamp load) 10,000,000 operations median

Gold Cross Bar Dry Circuit Computer/PLC Interface SPDT Switch Model also available.

SAMPLE PART NUMBERS

OPTION 1: L-5	/ A	OPTION 2: L-5	/ F
BASE MODEL		BASE MODEL	
GROMMET SIZE		½" FLEXIBLE CONDUIT FITTING	

INSTALLATION DIMENSIONS

HOLE TO SUIT STRAIN RELIEF CABLE FITTING SUPPLIED BY HARWIL OR ANY STANDARD $1 \not ⁄ 2 \prime$ RIGID OR FLEXIBLE ELECTRICAL CONDUIT FITTING

- Installation drawing and a numbered parts list is supplied with each unit.
- Special one-day delivery is available.

SPECIFIC GRAVITY COMPENSATING.

Featuring continuously adjustable float buoyancy control to allow use in fluids with specific gravity down to 0.6 .
Continuous buoyancy control allows switch activation at oil/water interface.
May be used in hazardous areas when used with intrinsically safe relays.
Consult factory for other dual-component fluid interface systems.
Horizontal Mounting Only
Water/Oil Interface switch point
Foam/Fluid interface switch point
High/Low Liquid Level Alarm
Liquid level indication
Direct pump control
Solenoid Valve On/Off Control
Available with Optional Filter Boot For Use in Highly Particle Contaminated Liquids.
Super-simple maintenance and checkout for personnel using a standard test meter.

MAGNETIC

KEY FEATURES	
Working Fluid Specific Gravity	Adjustable between $\mathbf{0 . 6}$ \& $\mathbf{1 . 5 +}$
Working Temp	$\mathbf{2 0 0}^{\circ} \mathbf{F} \mathbf{(9 3 ^ { \circ } \mathbf { C })} \mathbf{\text { Maximum }}$
Working Pressure	$\mathbf{7 5} \mathbf{~ p s i} \mathbf{(5 1 7} \mathbf{~ k P a})$
Process Connection	$\mathbf{1 " ~ N P T ~}$
Electrical Switch	SPDT 15A or Dry Circuit
Enclosure	NEMA 6P / IP 67

TYPICAL USES

For use in particle contaminated fluids, such as:

Seawater	Contaminated Ground Water
Sewage	Rusty Coolant Water
Soap Solutions	Soap Solutions

\approx TYPICAL WORKING FLUIDS

	Mild Acids
Water	Mild Bases
Some Hydrocarbons	Inorganics
Chemical Solutions	Oils
Glycols	Pure Water

PRODUCT DIAGRAM

541 Kinetic Drive
Oxnard, CA 93030
WEIGHT: 0.5 lb .
www.harwil.com

SAMPLE PART NUMBERS			
OPTION 1: L-8N	/ A	OPTION 2: L-8N	/ F
BASE MODEL		BASE MODEL	
GROMMET SIZE		½" FIPT	

FILTER BOOT

L-8N L-8CR

少 TECHNICAL SPECIFICATIONS

HYSTERESIS (\triangle LIQUID LEVEL TO ACTIVATE/DEACTIVATE SWITCH)
$\approx 1 / 4 "$ max. travel

WORKING FLUID SPECIFIC GRAVITY RANGE

Adjustable between 0.6 and 1.5+

WORKING PRESSURE:

75 psi max. continuous \& 100 psi max. non-operating

ELECTRICAL SWITCH CHARACTERISTICS

SPDT
15 A, $1 / 2 \mathrm{hp} @ 125$ or 250VAC
½A @ 125VDC, 1/4A @ 250VDC

5A @ 125VAC (Tungsten lamp load)
10,000,000 operations median
Gold Cross Bar Dry Circuit Computer/PLC Interface SPDT Switch Model also available. 0.1A or less, 5-24 VAC/DC.

L-8N (NORYL®)

WORKING TEMPERATURE: $180^{\circ} \mathrm{F}$ max. continuous.
WETTED MATERIALS: Body, Float and Bushing: Noryl ${ }^{\circledR}$ (PPO) (10\% glass fibers); Shaft and Screws: 316 stainless; Diaphragm: EPDM; Optional Filter Boot: EPDM (Viton ${ }^{\circledR}$ available by special order)

L-8VCR (FORTRON ${ }^{\circledR}$)

WORKING TEMPERATURE: $200^{\circ} \mathrm{F}$ max. continuous.
WETTED MATERIALS: Body, Float and Bushing: Fortron ${ }^{\circledR}$ (PPS) (40% glass fibers); Shaft and Screws: HASTELLOY ${ }^{\circledR}$ C; Diaphragm: Vito ${ }^{\text {® }}$; Optional Filter Boot: Viton ${ }^{\circledR}$ (EPDM available by special order)

CHAMBER FILLED WITH WORKING FLUID
OF TANK TO EQUALIZE PRESSURE DIFFERENTIAL

- PERMEABLE SHRINK

TUBE SEAL

- Installation drawing and a numbered parts list is supplied with each unit.
- Special one-day delivery is available.

The L-21 is a low cost, high performance level switch made from highly durable plastics. It features a variable liquid level differential and a single point pump up/pump down level control.

Interchangeable differential band modules, for all L-21 versions, allow for 5 minute on-site switching of differentials from $1.0^{\prime \prime}$ to $2.0^{\prime \prime}$ to $3.0^{\prime \prime}$ to $5.0^{\prime \prime}$ in any sequence to satisfy variable operational requirements as they occur. Its large differential provides immunity to nuisance switch tripping due to severe wave action and turbulence. The large differential also provides very low cost single point pump up/pump down level control.

Maintenance and checkout is a snap for plant maintenance personnel using any standard multimeter. Each unit comes with detailed instruction manual and parts list.

KEY FEATURES	
Working Fluid Specific Gravity	$\mathbf{0 . 7}$ minimum
Working Temp	$\mathbf{2 0 0}{ }^{\circ} \mathbf{F}\left(\mathbf{9 3}^{\circ} \mathbf{C}\right)$ Maximum
Working Pressure	$\mathbf{2 5 0} \mathbf{~ p s i g ~ (1 7 2 4 ~ \mathbf { ~ P P a })}$
Process Connection	$\mathbf{1 1 / 4 " ~ N P T ~}$
Electrical Switch	SPDT 15A
Enclosure	NEMA 6P / IP 67

\approx TYPICAL WORKING FLUIDS

Clean Water	Contaminated Ground Water
Filtered Sewage	Filtered Waste Water
Mild Acids	Inorganic Aqueous Solutions
Mild Bases	Sea Water

LIQUID LEVEL DIFFERENTIAL DIMENSONS

少 TECHNICAL SPECIFICATIONS

HYSTERESIS (Δ LIQUID LEVEL TO ACTIVATE/DEACTIVATE SWITCH)
1", 2", 3" or 5" travel (based on model selected)

ELECTRICAL SWITCH CHARACTERISTICS

SPDT
15 A, $1 / 2 \mathrm{hp}$ @ 125 or 250VAC
4A @ 125VAC (Tungsten lamp load) 1⁄2A @ 125VDC, 1/4A @ 250VDC

Note: Model L-21 employs magnetic coupling between float arm and switch body. Magnetic particles can accumulate on and around magnet housing which may affect proper operation. Please conduct appropriate fluid magnetic particle evaluation and operational tests prior to and during installation and use.

WORKING FLUID SPECIFIC GRAVITY

0.7 minimum

L-21N (NORYL®)

WORKING PRESSURE: 250 psi max. continuous WORKING TEMPERATURE: $180^{\circ} \mathrm{F}$ max. continuous. WETTED MATERIALS: Body, Float and Bushing: Nory ${ }^{\left({ }^{(}\right)}$(PPO) (10% glass fibers); Screws and shaft: 316 stainless steel

L-21VCR (FORTRON ${ }^{\circledR}$)

WORKING PRESSURE: 250 psi max. continuous WORKING TEMPERATURE: $200^{\circ} \mathrm{F}$ max. continuous.
WETTED MATERIALS: Body, Float and Bushing: Fortron ${ }^{\circledR}$ (PPS) (40% glass fibers); Screws and shaft: HASTELLOY ${ }^{\circledR} \mathrm{C}$

\triangle INSTALLATION DIMENSIONS

- Installation drawing and a numbered parts list is supplied with each unit.

The L-30 Level Switch is designed for use in potable water or a wide variety of chemicals. See Chemical Compatibility Chart) The liquid seal is continuously flushed by the working fluid and is available with an Optional Rubber Boot if there is particulate in the water. The L-30 Level Switch has models for horizontal or vertical installations. The L-30 Level Switch uses a 15 amp micro switch (SPDT - Single Pole Double Throw).

- Super-simple maintenance and checkout for personnel using a standard test meter.
- High/Low Liquid level alarm
- Solenoid Valve control
- Pump Up/ Pump Down Control (Use with LC-1 or Wireless)
- Intrinsically Safe Relay allows Model L-30 to be used in hazardous areas.
- Connection 1" NPT with $1 \times 1 \frac{1}{1 \prime \prime}$ "NPT bushing included
- Electrical Connection: Cable compression nut (specify grommet size) or "F" $1 / 2$ inch female

(ϵ c9

KEY FEATURES	
Working Fluid Specific Gravity	0.8 minimum
Working Temp	$200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right)$ Maximum
Working Pressure	$75 \mathrm{psi}(517 \mathrm{kPa})$
Process Connection	1 " with $1 \times 1 / 4$ Bushing
Electrical Switch	SPDT 15A or Dry Circuit
Weight	$0.5 \mathrm{lb} .(0.23 \mathrm{~kg})$
Enclosure	NEMA 6P / IP 67

TYPICAL USES

For use in particle contaminated fluids, such as:

Medium Slurries	Contaminated Ground Water
Sewage	Machine Cutting Oils

Waste Water
Machine Cutting Oils

PRODUCT DIAGRAM

HORIZONTAL MODELS

BUSHING MOUNT
PIPE NIPPLE MOUNT

SAMPLE PART NUMBERS			
OPTION 1: L-30N	/ A	OPTION 2: L-30N	/ F
BASE MODEL	\square	BASE MODEL	\square
GROMMET SIZE		½" FIPT	

MODEL
 L-30N L-30CR

出 TECHNICAL SPECIFICATIONS

HYSTERESIS (\triangle LIQUID LEVEL TO ACTIVATE/DEACTIVATE SWITCH) ~ $1 / 4$ " max. travel

ELECTRICAL SWITCH CHARACTERISTICS

SPDT
15 A, $1 / 2$ hp @ 125 or 250VAC ½A @ 125VDC, 1/4A @ 250VDC

5A @ 125VAC (Tungsten lamp load)
10,000,000 operations median

Gold Cross Bar Dry Circuit Computer/PLC Interface SPDT Switch Model also available. O.1A or less, 5-24 VAC/DC.

WORKING FLUID SPECIFIC GRAVITY:

0.8 minimum

WORKING PRESSURE:
75 psi max. operating
100 psi max. non-operating

L-30N (NORYL®)

WORKING TEMPERATURE: $180^{\circ} \mathrm{F}$ max. continuous.
WETTED MATERIALS: Body, Float and Bushing: Noryl ${ }^{\circledR}$ (PPO)
(10\% glass fibers); Shaft and Screws: 316 stainless steel; Diaphragm: EPDM; Optional Filter Boot: EPDM (Viton ${ }^{\circledR}$ available by special order); Optional Float Material: Polypropylene

L-30CR (FORTRON ${ }^{\circledR}$)

WORKING TEMPERATURE: $200^{\circ} \mathrm{F}$ max. continuous.
WETTED MATERIALS: Body, Float and Bushing: Fortron ${ }^{\circledR}$ (PPS)
(40% glass fibers); Shaft and Screws: HASTELLOY ${ }^{\circledR}$ (Titanium available by special order); Diaphragm: Viton ${ }^{\text {® }}$; Optional Filter Boot: Viton ${ }^{\circledR}$; Optional Float Material: Polypropylene

CHAMBER FILLED WITH WORKING FLUID
OF TANK TO EQUALIZE PRESSURE DIFFERENTIAL
\triangle INSTALLATION DIMENSIONS

- Installation drawing and a numbered parts list is supplied with each unit.
- Special one-day delivery is available.

LEVEL SWITCH

Side and Top Mount
Corrosion-resistant plastic with optional metal pivot pin (available in 316 stainless steel, HASTELLOY ${ }^{\oplus}$ C, Titanium, or Teflon ${ }^{\circledR}$ or PTFE).

10 times less sensitive from deposit and build-up of contaminants than sliding float models.

Each unit can be supplied with a special made to order $1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime} \times 1 / 2^{\prime \prime}$ reducer bushing for through wall mounting.

Output wire can be twisted pair 22 gauge or two conductor PVC heavy wall instrument cable.

STANDARD: SPST reed switch for 120/240VAC 50 Watt power.

(\in c界us

KEY FEATURES	
Working Fluid Specific Gravity	Top Mount: 0.8 \| Side Mount: 0.7
Working Temp	$0^{\circ}-200^{\circ} \mathrm{F}\left(-18^{\circ}-93^{\circ} \mathrm{C}\right)$
Working Pressure	250 psi (1724 kPa)
Process Connection	1/4" NPT
Electrical Switch	SPNO or SPNC, 0.5A
Enclosure	NEMA 6P / IP 67

TYPICAL USES

Water Level Control In:

Cooling Towers	Plating Tanks	Pools
Washing Tanks	Fish Farms	Ponds
Fountains	Aquariums	Water Features

※ TYPICAL WORKING FLUIDS

Mild Acids	Seawater
Mild Bases	Filtered Sewage
Pure Water	Contaminated Ground Water

PRODUCT DIAGRAM

NORMALLY CLOSED (NC)

NORMALLY OPEN (NO)

www.harwil.com

WEIGHT: 5 oz.

142 g


```
SPECIFIC GRAVITY COMPENSATING
MODEL L-40N/SG ALSO AVAILABLE
```

Customer specified specific gravity sensitivity.
Unique design enhances specific gravity sensitivity.
Applications include fuel/water detection, oil/water detection, or detection of ground water contamination.

INDUCTIVE LOADS

Switch contacts have been tested with small relays and 30A J-C relay inductive driving coils at 120/240VAC to 500,000 operations without failure. Steady state driving coil Volt/Amp rating should be 8VA or less.

NOTE: Model L-40 employs magnetic coupling between float arm and switch body. Magnetic particles can accumulate on and around magnetic housing which may affect proper operation. Please conduct appropriate fluid magnetic particle evaluation and operational tests prior to and during installation and use.

* TECHNICAL SPECIFICATIONS

ELECTRICAL (REED) SWITCH CHARACTERISTICS

SPNO or SPNC

Contact Ratings:

AC Voltage (max. switching)	300VAC
DC Voltage (max. switching)	350VDC
Current (max. switching)	0.5 A
Power (max) (VA, W)	50 watts
ONAL: SPDT, 3 watt, 30VAC/VDC.	

OPTIONAL: SPDT, 3 watt, 30VAC/VDC.
HYSTERESIS (Δ LIQUID LEVEL TO ACTIVATE/DEACTIVATE SWITCH)

```
\approx3/8" (0.375") max. travel
```


L-40N (NORYL®)

WORKING FLUID SPECIFIC GRAVITY:

Top Mount: 0.8 Side Mount: 0.7
WORKING PRESSURE: 200 psi max. continuous
WORKING TEMPERATURE: $180^{\circ} \mathrm{F}$ max. continuous.
WETTED MATERIALS: Body, Float and Bushing: Noryl ${ }^{\circledR}$ (PPO)
(10% glass fibers); Pivot Pin: 316 stainless steel

L-40VCR (FORTRON ${ }^{\circledR}$)

WORKING FLUID SPECIFIC GRAVITY:

Top Mount: 0.9 Side Mount: 0.7
WORKING PRESSURE: 250 psi max. continuous WORKING TEMPERATURE: $200^{\circ} \mathrm{F}$ max. continuous.
WETTED MATERIALS: Body, Float and Bushing: Fortron ${ }^{\circledR}$ (PPS) (40% glass fibers); Pivot Pin: HASTELLOY ${ }^{\circledR}$ C

\triangle INSTALLATION DIMENSIONS

- Installation drawing and a numbered parts list is supplied with each unit.
- Special one-day delivery is available.

The CF-112 is a stand alone interface module that automatically actuates a chemical feed pump when primary bulk fluid begins to flow.
This module can be used in isolated stand alone systems or part of large complex systems.
Model CF-112 is available for 120VAC or 240VAC, $50-60 \mathrm{~Hz}$ power as standard.

Other $A C$ and $D C$ power combinations available per request.

KEY FEATURES	
Working Temp	$180^{\circ} \mathrm{F}\left(82^{\circ} \mathrm{C}\right)$ Maximum
Working Pressure	250 psi (1724 kPa)
Process Connection	3/4" NPT (1/2" Option Available)
Electrical Switch	SPNO
Voltages	120V \& 240V
Enclosure	NEMA 6 / IP 67

TYPICAL USES

For metering and/or adding chemicals in both continuous and batch fluid systems such as:

Well Water	Cooling Tower pH /orp Control
Drinking Water	Metal Plating Make Up Solutions
Waste Fluid Processing	Boiler Treatment Additives

PRODUCT DIAGRAM

541 Kinetic Drive
Oxnard, CA 93030
www.harwil.com

MODEL SELECTION CHART				
Flow Range (Water calibrated at $70^{\circ} \mathrm{F} / 21^{\circ} \mathrm{C}$) Accuracy $\pm 10 \%$				
PRIMARY FLOW LINE SIZE	PRIMARY FLOW ON/OFF SET POINT (GPM)		CF-112N PART NUMBER	
	ON	OFF		
$3 / 41$	0.9	0.8	CF-112N. 75	
$1 "$	1.1	1.0	CF-112N-1	
11/2"	2.8	2.5	CF-112N-1.5	
$2 "$	4.9	4.4	CF-112N-2	
Note: Consult factory for larger pipes and lower ON/OFF switch set points.				
SAMPLE PART NUMBER				
		CF-112N	/1	/120
BASE MODEL AND PART NUMBER			PIPE SIZE	
Voltage				

EXAMPLE: CF-112N/1"/240

\triangle INSTALLATION DIMENSIONS

WORKING PRESSURE
250 psi max. continuous

SHOCK OPERATION

10 g for 11 ms with no contact open.

WETTED MATERIALS

Body and Bushing: Nory ${ }^{\circledR}$ (PPO) (10\% glass fibers)

ELECTRICAL SWITCH CHARACTERISTICS

Feed pump motor maximum contact ratings. VOLTAGE:
LOAD TYPE (RESISTIVE):
120VAC, 220VAC
MOTOR:
10A
SWITCH CONTACTS: SPNO

Consult factory for other AC motor voltages plus DC motor operation.
NOTE: All circuitry potted in flexible urethane for max. Long term shock, thermal, stress, and moisture protection.

- Installation drawing and a numbered parts list is supplied with each unit.
- Special one-day delivery is available.

CHEMICAL FEED CONTROLLER

The CF-12 is a stand alone interface module that automatically actuates a chemical feed pump when primary bulk fluid begins to flow.
This module can be used in isolated stand alone systems or part of large complex systems.
Model CF-12 is available for $120 \mathrm{VAC}, 50-60 \mathrm{~Hz}$ power as standard.
Available with 1 or 2 sets of receptacles.

KEY FEATURES	
Working Temp	$180^{\circ} \mathrm{F}\left(82^{\circ} \mathrm{C}\right)$ Maximum
Working Pressure	250 psi (1724 kPa)
Process Connection	$3 / 4$ " NPT (1⁄2" Option Available)
Electrical Switch	SPNO
Voltages	120V 50/60 Hz
Enclosure	NEMA 3R / IP 14

TYPICAL USES

For metering and/or adding chemicals in both continuous and batch fluid systems such as:

Well Water	Cooling Tower pH /orp Control
Drinking Water	Metal Plating Make Up Solutions
Waste Fluid Processing	Boiler Treatment Additives

PRODUCT DIAGRAM

541 Kinetic Drive
Oxnard, CA 93030
www.harwil.com

MODEL SELECTION CHART		
Flow Range (Water calibrated at $70^{\circ} \mathrm{F} / 21^{\circ} \mathrm{C}$) Accuracy $\pm 10 \%$		
PRIMARY FLOW LINE SIZE	PRIMARY FLOW ON/OFF SET POINT	

SAMPLE PART NUMBER			
	CF-12N	-1G	/1
	BASE MODEL		
	1G OR 2G		
PIPE SIZE			

EXAMPLE: CF-12-1G/1"

\triangle INSTALLATION DIMENSIONS

WORKING PRESSURE
250 psi max. continuous

SHOCK OPERATION

10 g for 11 ms with no contact open.

WETTED MATERIALS

Body and Bushing: Nory ${ }^{\circledR}$ (PPO) (10\% glass fibers) PVC Tee

WORKING TEMPERATURE
180 ${ }^{\circ} \mathrm{F}$ max. continuous.

SHOCK LIMIT

10 g

ELECTRICAL SWITCH CHARACTERISTICS

Feed pump motor maximum contact ratings. VOLTAGE:

120VAC
LOAD TYPE (RESISTIVE):
13A MOTOR:
SWITCH CONTACTS: $1 / 2 \mathrm{hp}$ SPNO

- Installation drawing and a numbered parts list is supplied with each unit.
- Special one-day delivery is available.

CF-8/1G
CF-8/2G
The CF-8 is a stand alone interface module that automatically actuates a chemical feed pump when primary bulk fluid begins to flow.

This module can be used in isolated stand alone systems or part of large complex systems.

Model CF-8 is available for 120VAC, $50-60 \mathrm{~Hz}$ power as standard.

KEY FEATURES	
Flow Range	5-80 GPM (18-302 L/m)
Working Temp	$180^{\circ} \mathrm{F}\left(82^{\circ} \mathrm{C}\right)$ Maximum
Working Pressure	50 psig (344 kPa) @ 180 ${ }^{\circ} \mathrm{F}$
Process Connection	1 NPT
Electrical Switch	SPDT, $1 / 2 \mathrm{hp}$ 13A or Dry Circuit
Enclosure	NEMA 3R / IP 14
TYPICAL USES	
Monitoring fluid flow in:	
Air Conditioning Systems	Industrial Refrigeration Systems
Cooling in Data Centers	Pools and Spas
Chillers	Scrubbers
Fluid Blending Systems	Water Treatment Systems
Natural Gas	
§ TYPICAL WORKING FLUIDS	
Filtered Sewage Water	Contaminated Ground Water
Mild Acids	Sulfolane
Rusty Coolant Water	Sea Water
Waste Water	Pool Water (low ppm Chlorine)

\triangle INSTALLATION DIMENSIONS

Email: harwil@harwil.com

MODEL SELECTION CHART			
Flow Range (Water calibrated at $70^{\circ} \mathrm{F} / 21^{\circ} \mathrm{C}$) Accuracy $\pm 10 \%$			
PIPE SIZE	NOMINAL ON/OFF SWITCH POINT RANGE (GPM)	SHAFT LENGTH	PADDLE NUMBER
$1{ }^{\prime \prime}$	5.0-3.0	-	10512
	9.6-7.5	1	2
	15.4-18.0	1	1
$11 / 2^{\prime \prime}$	12.0-9.5	-	10502
	14.2-11.8	2	3
	19.0-13.5	-	10570A
	22.5-19.0	2	2
	34.4-30.4	2	1
$2{ }^{\prime \prime}$	14.4-10.2	-	10593
	16.5-11.0	-	10566
	25.8-21.8	2	3
	39.8-33.6	2	2
	58.0-50.8	2	1
$3{ }^{\prime \prime}$	42.4-37.0	3	3
	55.6-49.8	3	2
	80.6-65.2	3	1
Call our	mer support for a wider range	sizes. (80	-6800

尖 TECHNICAL SPECIFICATIONS

HYSTERESIS (Δ FLOW RATE TO ACTIVATE/DEACTIVATE SWITCH)
$\approx 10 \%$ at upper end of flow range
$\approx 30 \%$ at lower end of flow range

DIFFERENTIAL PRESSURE DROPS ACROSS UNIT

Under normal operating conditions:

$$
\begin{aligned}
& \approx 1 "-3 " \text { pipe, less than } 0.5 \mathrm{psi} \\
& \approx 4 "-10 " \text { pipe, negligible }
\end{aligned}
$$

WORKING LINE PRESSURE:

50 psi max., operating @ $180^{\circ} \mathrm{F}$
100 psi max. non-operating @ $180^{\circ} \mathrm{F}$
Pressure over 50 psi can affect the switch point range

ELECTRICAL SWITCH CHARACTERISTICS

SPDT
13A, $1 / 2 \mathrm{hp} @ 125 \mathrm{VAC}$
1⁄2A @ 125VDC
(tungsten lamp load)

SAMPLE PART NUMBER			
CF-8	-1G	/1	/2
BASE MODEL			
	OR 2G		
SHAFT LENGTH			
PADDLE SIZE			

EXAMPLE: CF-8-1G/1/2

PRODUCT DIAGRAM

- Installation drawing and a numbered parts list is supplied with each unit.
- Special one-day delivery is available.

The combination of any two Harwil liquid level switches and an electronic control module mounted in a weather-resistant box provide a ready-to-go system for the automatic filling or emptying of tanks or vessels.

System is composed of:

Electronic Latching/Unlatching Control Module

Special electronic module design eliminates false starts due to turbulent wave action.

NEMA 4/IP 66 weather resistant box with two standard $1 / 2^{\prime \prime}$ seal tight flexible conduit fittings.

A secondary 10A SPDT relay output is also provided.
Color coded $w /$ ring and labeled terminal strip.
120 or 240 VAC $50 / 60 \mathrm{~Hz}$ models available.
30A DPST motor contactor output for driving $11 / 2(120 \mathrm{VAC}) / 3 \mathrm{hp}$ (240VAC) pumps.

Choose from any two Harwil liquid level switch models.
Models for clean or contaminated fluids such as water, sea water, sewage, thin slurries, contaminated ground water, etc.
Models for strong acids, bases, hydrocarbons, alcohols, inorganic compounds, ketones, esters or ethers.
Each system is provided with a complete, descriptive parts list and an installation and wiring diagram for both level switches and control module.

Maintenance and check out requires only a standard multimeter.
LC-1 Control Module is delivered pre-wired and is ready to hook-up to control your liquid level.

Upper and lower level switches comprising any two of the following Harwil models:

SAMPLE PART NUMBER

LC-1	/ L-5	/ 6FT	/ 120
CONTROL MODULE			
LIQUID LEVEL	WITCH		
CABLE LENGTH			
120VAC 50/60 HZ INPUT POWER			

ELECTRONIC LATCHING CONTROL MODULE SPECIFICATIONS:

Operating Voltage (Input)
Voltage: 120 or 240 VAC
Tolerance: $\pm 15 \%$
Frequency: $50 / 60 \mathrm{~Hz}$

OUTPUT

Electromechanical relay
Form: Single pole double throw, isolated
Rating: 10A resistive at 240 VAC

PROTECTION

Transient Protected
Dielectric Breakdown: 1500 volts RMS minimum between input, output and probe.

ENVIRONMENT

Operating Temperatures: $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage Temperatures: $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Coating: Printed circuit board is conformal coated to resist moisture and corrosion.

MOTOR CONTACTOR SPECIFICATIONS

OPERATING COIL

120VAC or 208-240VAC $50 / 60 \mathrm{HZ}$
Inrush: 31 VA
Continuous use: 7 VA
Pickup: 90VAC (120VAC Coil)
170VAC (208-240 VA Coil)

Coil Insulation: Class B
Coil Connections: Double Male $1 / 4^{\prime \prime}$ quick connect
Maximum Ambient Temperature: $155^{\circ} \mathrm{F}$

OUTPUT POWER CONTACTS

Type: DPST - Normally Open
Contact rating per pole:
Terminal Strip-812 Series
Electrical Rating
Rated voltage - 1600 Volts RMS
Current rating - 30A
Wire Size
Will accommodate lugs for wire sizes AWG \#14 to 12
Hardware
Screws and terminals - brass, nickel plated
Solder terminals - brass, hot-tinned
Molded Material
G.P. Phenolic (94V-0).

Complete operating instructions, mechanical and electrical installation drawing and a numbered parts list is supplied with each unit.

HOW TO ORDER:

Four items are required to order a complete control system:

1. Basic Model Number: LC-1
2. Level Switch Model Number: Choose from 6 standard models.
3. Length of cable in feet between control module
and liquid level switches. Standard cable is $1 / 4^{\prime \prime}$ O.D. SVJ $18-2 / 90^{\circ} \mathrm{C}$ UL listed. Note: if customer is to supply cable, enter "O"
4. Operating Voltage.

- Installation drawing and a numbered parts list is supplied with each unit.
- Special one-day delivery is available.

THE PROBLEM

Failure to establish programmed flow after pump turn on signal has been applied.

Failure to maintain proper flow during normal operation due to line clogging, line rupture, incorrect valve positioning, etc.

THE SOLUTION

Insertion of an SDC-101 shut down control in the input power line of pumps, heaters, valves, etc., that are flow critical will interrupt power automatically upon loss of flow.
Power will remain off until the problem has been corrected and proper flow re-established.

Loss of pump prime is a persistent fluid system problem. A flow switch at the pump output is a viable solution, except that it presents a "catch 22 "
situation, i.e. lack of flow at start up will not allow the flow switch to supply power to the pump. A manual push to start or automatic time delay relay switch in parallel with the flow switch is required to supply power to the pump motor during startup. After the pump is up to speed the parallel switch kicks out and the flow switch takes over flow monitoring. Model SDC-101 is provided with a parallel variable time delay relay switch/flow switch combination to provide pump protection during startup as well as the continuous phase of operation.

SDC-101 modules may be connected to monitor:
Critical points in simple one pump systems or, in series, with pumps, heaters, valves, etc., so that failure of any part will shut the whole system down.

Isolated or remote components and sub-systems.

TYPICAL USES

For use in:

Chemical Processing
Food Processing
Water Treatment
Agriculture

Sanitation

Aerospace ground support systems
Mining
Transportation

ADDITIONAL FEATURES:

Continuous adjustment of time delay cycle.

120/240VAC and DC power options
Rain resistant housing for rugged, industrial usage
Can be used in mobile vehicles, ships, trains, etc.

OPERATIONAL FEATURES:

Supplied pre-wired and ready for immediate installation
All components UL listed or recognized
Input and output power lines are quickly and easily attached to 30A terminal block

Terminal block positions are numbered and wiring is color coded for easy, fast and accurate installation and servicing.
Performance checks are quick and straightforward using an uncomplicated, standard multimeter.

Enclosure: NEMA 4 / IP 66.

SPECIFICATIONS:

Control Box
Rain resistant type 3R - UL listed.

TIME DELAY RELAY

Operation
When rating voltage is applied to the input, the timing cycle begins and the DPDT relay is activated. At the end of the timing cycle, the relay is de-activated and remains in that condition until power is removed from the input. Switching off and then turning on of input power re-starts the timing cycle. This timing sequence will repeat each time the system is turned on.

- Input Voltage - 120/240VAC, $50 / 60 \mathrm{~Hz}$
- Output Contact Arrangement - DPDT
- Contact Rating
- $10 \mathrm{~A}, 1 / 2 \mathrm{hp} @ 120 / 240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$
- Standard Time Cycle
- 1 to 180 sec., Continuously adjustable
- Ambient Operating Temp. Range -5° to $140^{\circ} \mathrm{F}$
- Termination - $1 / 4^{\prime \prime}$ quick disconnect terminals

POWER IS SUPPLIED TO THE PUMP IMMEDIATEIY ON START UP. THE TIME DELAY IS ALSO INITIATED WHICH THEN OPENS THE PARALLEL BYPASS SWITCH AT END OF THE

SWITCH PERFORMANCE DATA

Refer to manufacturer's specification sheets for information regarding performance of:

- Harwil Fluid Flow or Liquid Level switches
- Pressure switches
- Motion Limit switches
- Proximity Switches, etc. which may be used in conjunction with, but are not included with, the SDC-101 module.

Complete operating instructions. Mechanical and Electrical installation drawing and a numbered parts list is supplied with each unit.
Super-simple maintenance and checkout for personnel using a standard test meter.

MOTOR CONTACTOR SPECIFICATIONS OPERATING COIL

- 120VAC or 208-240VAC $50 / 60 \mathrm{~Hz}$
- Inrush: 31 VA
- Continuous Use: 7 VA
- Pickup: 90VAC (120VAC Coil)
- 170VAC (208 VA Coil)
- Coil Insulation: class B
- Coil Connections: Double Male $1 / 4^{\prime \prime}$ quick connect
- Maximum Ambient Temperature: 155°

OUTPUT POWER CONTACTS

- Type: DPST - Normally Open
- Contact rating per pole.

Terminal Strip - 812 Series

ELECTRICAL RATING

- Rated voltage - 1600 Volts RMS
- Current rating - 30A

WIRE SIZE

- Will accommodate lugs for wire sizes AWG \#14 to \#12

HARDWARE

- Screws and terminals - brass, nickel plated
- Solder terminals - brass, hot-tinned

MOLDED MATERIAL

- G.P. phenolic (94V-0).
- UL Recognized

CHEMICAL RESISTANCE CHART FOR VARIOUS PUMP MATERIALS

The recommendations listed on the following pages are based upon information from material suppliers and careful examination of available informa－ tion and are believed to be accurate．However，since the resistance of metals，plastics，and elastomers can be affected by concentration，temperature， presence of other chemicals and other factors，this information should be considered as a general guide rather than an unqualified guarantee．Ultimately the customer must determine the suitability of the pump used in various solutions．

All recommendations assume ambient temperatures unless otherwise noted．The ratings for these materials are based upon the chemical resistance only． Added consideration must be given to pump selections when the chemical is abrasive，viscous in nature，or has a specific gravity greater than 1：1．

How to use this chart：Column at left lists chemicals in alphabetic order．Columns at right list various pump materials，and their resistance to the chemicals are rated by a letter code．

Chemical Effect Ratings

A－NO EFFECT－ACCEPTABLE
B－MINOR EFFECT－ACCEPTABLE
C－MODERATE EFFECT－QUESTIONABLE
D－SEVERE EFFECT－NOT RECOMMENDED
＊－NOT TESTED

FOOTNOTES

1．P．V．C．－Satisfactory to $72^{\circ} \mathrm{F}$
2．Polypropylene－Satisfactory to $72^{\circ} \mathrm{F}$
3．Polypropylene－Satisfactory to $120^{\circ} \mathrm{F}$
4．Buna－N－Satisfactory for＂ O ＂Rings
5．Polyacetal－Satisfactory to $72^{\circ} \mathrm{F}$
6．Ceramag－Satisfactory to $72^{\circ} \mathrm{F}$

The performance comments and limitations listed above are supplied by Harwil Corporation for information only．Ultimately the customer must determine the suitability of Harwil Corporation products used in various solutions，situations and environments．

			$\begin{aligned} & \sum_{1}^{\sum} \\ & \sum_{3}^{\sum} \end{aligned}$		$\begin{aligned} & \text { u } \\ & \text { 흘 } \\ & \text { 폳 } \end{aligned}$	$\begin{aligned} & \text { 山 } \\ & \mathbf{Z} \\ & \mathbf{O} \\ & \boldsymbol{\sim} \end{aligned}$	$\underset{\sim}{\sim}$	들	$\begin{aligned} & \text { Z } \\ & \text { O } \\ & \underset{\sim}{U} \end{aligned}$	$\begin{aligned} & \text { İ } \\ & \text { O } \\ & \text { z } \end{aligned}$		$\begin{aligned} & \text { Z } \\ & \text { O } \\ & \text { 足 } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { Z } \\ & \text { O } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{z} \\ & \vdots \\ & \mathbf{\infty} \end{aligned}$		$\begin{aligned} & \text { خ } \\ & \text { O } \end{aligned}$				$\begin{aligned} & \sum_{\sum}^{\sum} \\ & \sum_{3}^{\sum} \end{aligned}$	$\begin{aligned} & \sum_{\sum}^{\sum} \\ & \underset{k}{\mathbb{Z}} \end{aligned}$	$\begin{aligned} & \text { u } \\ & \text { 흘 } \\ & \text { 픋 } \end{aligned}$	$\begin{aligned} & \text { 山 } \\ & \text { Z } \\ & \mathbf{O} \\ & \boldsymbol{\omega} \end{aligned}$	$\underset{\underset{\infty}{\infty}}{\tilde{m}}$		$\begin{aligned} & \text { Z } \\ & \text { O } \\ & \text { H } \\ & \mathbf{H} \end{aligned}$			$\begin{aligned} & z \\ & \text { O } \\ & \text { M } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { Z } \\ & \hline \mathbf{D} \end{aligned}$	$\begin{aligned} & \mathbf{z} \\ & \vdots \\ & \vdots \\ & \hline \mathbf{\infty} \end{aligned}$		$\begin{aligned} & \text { Y } \\ & \text { O } \\ & \text { O} \end{aligned}$
A																	Isobuty	A	A	B	A	A	A	c	＊	＊	A	A	＊	A	C	A	A
Acetaldehyde ${ }^{5}$	A	A	B	A	A	D	＊	D	A	＊	B	A	D	B	B	A	Isopropyl	A	A	B	A	A	A	c	＊	＊	A	A	＊	A	C	A	A
Acetamide	B	A	＊	＊	＊	＊	＊	＊	＊	＊	＊	＊	A	A	A	A	Methylo	A	A	B	A	A	A	C	B	A	A	A	＊	C	B	A	A
Acetate Solv．${ }^{2}$	B	A	B	＊	＊	A	C	B	A	＊	D	＊	D	D	＊	A	Octyl	A	A	A	A	A	A	c	＊	＊	A	＊	＊	A	B	A	A
Acetic Acid，Glacia＇	B	A	B	A	A	C	C	C	A	C	B	A	D	D	B	B	Propyl	A	A	A	A	A	A	＊	A	A	A	A	＊	A	A	A	A
Acetic Acid 20\％	B	A	＊	A	A	＊	C	B	A	A	A	A	A	C	＊	B	Aluminum Chloride 20\％	D	C	B	A	A	D	＊	A	＊	A	A	A	A	A	A	A
Acetic Acid 80\％	B	A	＊	A	A	＊	c	D	A	B	B	＊	A	C	＊	B	Aluminum Chloride	D	C	D	C	A	C	＊	A	A	A	A	A	A	A	＊	A
Acetic Acid	B	A	B	A	A	C	C	A	A	A	A	A	C	C	B	A	Aluminum Fluoride	D	C	＊	D	B	＊	＊	A	A	A	A	＊	A	A	＊	A
Acetic Anhydride	A	A	B	A	A	C	D	D	A	D	A	A	D	A	B	A	Aluminum Hydroxide ${ }^{6}$	A	A	A	＊	＊	A	＊	A	A	A	A	＊	A	A	＊	A
Acetone ${ }^{6}$	A	A	A	A	A	A	A	D	A	D	B	A	D	D	A	B																	
Acetyl Chloride	C	A	＊	＊	＊	D	＊	＊	A	＊	＊	A	A	＊	＊	A	Alum Potassium Sulfate （Alum），10\％	A	＊	A	＊	B	＊	＊	A	A	＊	＊	＊	A	＊	＊	A
Acetylene ${ }^{2}$	A	A	A	B	＊	B	＊	B	＊	＊	D	A	A	A	A	A	Alum Potassium Sulfate （Alum），100\％	D	A	B	＊	B	C	＊	A	A	A	A	＊	A	A	＊	A
Acrylonitrile	A	C	B	B	B	A	＊	＊	＊	＊	B	A	C	D	D	A	Aluminum Sulfate	c	C	A	A	A	C	C	A	A	A	A	A	A	A	A	A
Alcohols																	Amines	A	A	A	B	A	B	＊	C	A	B	＊	＊	D	D	B	A
Amyl	A	A	C	A	A	A	B	A	A	C	B	A	A	A	A	A	Ammonia 10\％	＊	A	＊	A	A	＊	＊	A	A	A	A	A	A	D	＊	B
Benzyl	A	A	B	A	A	A	C	D	＊	A	A	＊	A	D	B	A	Ammonia，Anhydrous	B	A	B	B	A	D	＊	A	A	A	A	B	D	B	A	A
Butyl	A	A	B	B	A	B	C	A	A	A	B	A	A	A	A	A					＊			＊					＊				
Diacetone ${ }^{2}$	A	A	A	A	A	A	C	D	＊	A	D	＊	D	D	A	A	Ammonia，Liquids	A	A	D		B	D	\star	A	A	A	A		D	B	A	A
Ethyl	A	A	B	A	A	A	C	A	＊	A	A	＊	A	A	B	A	Ammonia，Nitrate	A	A	C	＊	＊	D	＊	B	＊	A	A	＊	＊	A	＊	A
	A	A	A	A	A	A	C	＊	＊	A	A	＊	A	A	A	A	Ammonium Bifluoride	C	A	D	＊	B	＊	＊	A	＊	A	A	＊	A	A	＊	A
																	Ammonium Carbonate	A	A	C	A	B	B	＊	A	A	A	A	＊	B	D	A	A

304 STAINLESS STEEL 316 STAINLESS STEEL ALUMINUM TITANIUM HASTELOY C BRONZE BRASS PVC (TYPE 1) TEFLON NORYL POIYPRPYLENE FORTRON VITON BUNA N ETHYLENE PROPYLENE EPOXY

Ammonium Casenite

$*$	A	$*$	$*$	$*$	$*$	$*$	$*$	$*$	A	$*$	$*$	$*$	$*$	$*$	A
A	C	C	D	A	D	C	A	A	A	A	A	A	A	A	A

Butylene
Butyl Acetate
Butyric Acid 1
Butyl Acetate
Butyric Acid

C

Calcium Bisulfate	D	A	D	*	*	D		D	A	A	*	*	*	A	A	*	A
Calcium Bisulfide	*	B	C	A	A	c		*	A	A	A	A	*	A	A	D	A
Calcium Bisulfite	B	A	C	A	A	C		*	A	A	A	A	*	A	A	*	*
Calcium Carbonate	A	A	C	A	A	c		*	A	A	A	A	*	A	A	*	A
Calcium Chlorate	B	A	*	B	B	c		*	A	A	*	*	*	A	*	*	A
Calcium Chloride	A	D	C	A	A	B		*	A	A	A	A	A	A	A	A	A
Calcium Hydroxide	A	A	C	A	A	B		*	A	A	A	A	*	A	A	A	A
Calcium Hypochlorite	D	C	C	A	B	D		*	D	A	A	A	*	A	B	A	A
Calcium Sulfate	A	A	B	A	B	B		*	A	A	A	A	A	A	A	*	A
Calgon	A	A	*	*	*	c		*	*	*	A	A	*	A	A	*	A
Cane Juice ${ }^{2}$	A	A	B	*	*	B		C	A	*	*	D	*	*	A	*	A
Carbolic Acid (See Phenol)	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
Carbon Bisulfide ${ }^{2}$	A	A	A	*	*	c		*	D	*	*	D	*	A	D	D	A
Carbon Dioxide (wet)	A	A	C	*	A	c		c	*	A	*	*	*	*	*	*	*
CarbonDisulfide ${ }^{2}$	B	A	C	*	*	c		c	D	A	D	D	A	A	D	D	A
Carbon Monoxide	A	A	A	*	*	*		*	A	*	B	A	*	A	A	A	A
Carbon Tetrachloride ${ }^{21}$	B	B	C	A	A	c		A	C	A	D	D	C	A	C	*	C
Carbonated Water	A	A	A	*	*	B		*	A	*	A	A	*	A	A	A	A
Carbonic Acid	A	B	A	*	A	B		*	A	A	A	A	*	A	B	A	A
Catsup	A	A	D	*	*	c		*	A	*	A	A	*	A	A	*	A
Chloracetic Acid ${ }^{2}$	D	D	C	A	A	D		*	A	A	*	D	*	D	D	B	B
Chloric Acid	D	D	*	*	*	*		*	D	A	*	*	*	*	D	*	D
Chlorinated Glue	A	A	D	*	*	c		*	*	*	C	*	*	A	C	B	A

Chlorine																
Anhydrous Liquid	D	D	D	D	A	D	*	D	A	A	D	C	A	D	B	B
Chlorine (dry)	A	A	D	D	A	A	B	*	A	*	*	C	D	*	*	D
Chlorine Water	*	D	D	A	B	D	D	A	A	C	D	c	A	D	*	*
Chlorobenzene (Mono)	A	A	B	*	A	B	*	D	A	D	D	A	A	D	D	A
Chloroform	A	A	D	A	A	B	*	D	A	D	D	C	A	D	D	A
Chlorosulfonic Acid ${ }^{1}$	D	*	D	A	B	D	*	C	A	D	D	D	D	D	D	C
Chlorox (Bleach)	A	A	C	*	A	A	*	A	A	A	D	C	A	C	B	A
Chocolate Syrup	A	A	A	*	*	*	*	*	*	A	A	*	A	A	*	A
Chromic Acid 5\%	A	A	C	A	A	D	D	A	*	C	A	A	A	D	A	B
Chromic Acid 10\%	B	*	*	A	A	*	D	A	A	A	A	*	A	D	*	C
Chromic Acid 30\%	B	*	*	A	A	*	D	A	A	D	A	*	A	D	*	D
Chromic Acid 50\%	B	B	C	A	A	D	D	B	A	D	B	B	A	D	A	c
Cider	A	A	B	*	*	A	*	A	*	A	*	*	A	A	*	A
Citric Acid	A	A	C	A	A	D	C	A	A	A	B	*	A	D	A	

		7ヨヨlS SSヨ7NIVIS 9LE	\sum \sum \sum \sum	$\begin{aligned} & \sum \sum \\ & \underset{\sum}{\sum} \\ & \underset{V}{\mathbb{E}} \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { Z } \\ & \text { O } \end{aligned}$	$\underset{\sim}{\underset{\sim}{\square}}$	$\begin{aligned} & \text { I } \\ & \stackrel{2}{2} \\ & \frac{1}{2} \\ & \square \end{aligned}$	$\begin{aligned} & \mathbf{Z} \\ & \text { O } \\ & \text { 를 } \end{aligned}$	$\begin{aligned} & \underset{\sim}{2} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$		$\begin{aligned} & Z \\ & 0 \\ & 0 \\ & \underline{a} \\ & 0 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \text { Z } \\ & \stackrel{0}{5} \end{aligned}$	$\begin{aligned} & \mathbf{Z} \\ & \underset{\infty}{\mathbf{~}} \end{aligned}$		$\begin{aligned} & \text { خ } \\ & \text { O} \\ & \text { Qu } \end{aligned}$		7ヨIS SSヨlNIVIS †O\&	7ヨヨlS SSヨINIVIS 9IE	$\underset{\sum}{\sum \sum}$			$\begin{aligned} & \text { 山 } \\ & \mathbf{Z} \\ & \mathbf{O} \\ & \mathbf{0} \end{aligned}$	$\underset{\sim}{\sim}$	PVC（TYPE 1）		$\begin{aligned} & \text { ㄹ } \\ & \text { O } \\ & \text { Z } \end{aligned}$	POLYPRPYLENE	$\begin{aligned} & \text { Z } \\ & \text { O } \\ & \text { 货 } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Z } \\ & \hline \mathbf{V} \end{aligned}$	$\underset{\underset{\sim}{2}}{\underset{\sim}{\mathbf{~}}}$	ETHYLENE PROPYLENE	爻
Hydrogen Peroxide 10\％	C	C	A	C	A	D	D	A	A	＊	＊	B	＊	A	＊	D	Mercury	A	A	C	C	A	D	D	A	A	A	A	＊	A	A	A	A
Hydrogen Peroxide 30\％	＊	B	＊	B	A	＊	D	A	A	＊	A	C	A	D	＊	B	Methanol（See Alcohol Methyl）																
Hydrogen Peroxide	A	B	A	B	A	D	D	A	A	B	A	C	A	D	c	A	Methyl Acetate	＊	A	A	＊	A	A	＊	＊	A	＊	＊	＊	D	D	B	＊
Hydrogen Sulfide， Aqueous Solution	D	A	C	A	A	D	C	A	A	A	A	A	D	C	A	A	Methyl Acrylate	＊	＊	＊	＊	＊	＊	＊	＊	＊	＊	＊	＊	D	D	B	A
Hydrogen Sulfide（dry）	C	A	D	＊	A	D	C	A	A	＊	＊	A	D	＊	＊	A	Methyl Acetone	＊	A	A	＊	＊	A	＊	＊	A	D	＊	＊	D	D	＊	C
Hydroxyacetic Acid （70\％）	＊	＊	D	B	＊	＊	＊	A	＊	＊	＊	＊	A	A	A	A	Methyl Alcohol 10\％	＊	A ＊	C	＊	A	C	＊	A	A	＊	＊	＊	＊	B	＊	A
I																		＊			＊	＊	＊	＊	＊	＊	D	＊	＊				
Ink	A	A	C	＊	＊	C	＊	＊	＊	B	＊	＊	A	A	＊	A	Methyl Butyl Ketone	＊	A ＊	A A	＊	＊	A	＊	＊	＊	D	A	＊	D	D	A	B
lodine	D	D	D	A	B	D	＊	D	A	A	D	＊	A	B	B	A																	
lodine（in Alcohol）	＊	B	＊	D	A	＊	＊	D	A	C	B	＊	A	D	＊	＊	Methyl Chloride	A	A	D	A	A	A	＊	D	A	D	D	＊	A	D	C	A
lodoform	C	A	A	＊	＊	C	＊	＊	A	＊	＊	＊	A	＊	＊	＊	Methyl Dichloride	＊	＊	＊	＊	＊	＊	＊	＊	＊	D	＊	＊	A	D	D	A
Isotane ${ }^{2}$	＊	＊	A	＊	＊	＊	＊	＊	＊	D	D	＊	A	A	＊	A	Methyl Ethyl Ketone	A	A	A	A	A	A	＊	D	A	D	A	A	D	D	A	B
	＊			＊	＊	＊	＊	＊	＊	＊	＊	＊	D				Methyl Isobutyl Ketone ${ }^{2}$	＊	A	＊	A	A	＊	＊	D	A	D	C	A	D	D	C	B
Isopropyl Acetate Isopropyl Ether ${ }^{2}$	＊	B	C						A	D	D	＊	D	D	D	A	Methyl Isopropyl Ketone	＊	A	＊	＊	＊	＊	＊	＊	＊	D	＊	＊	D	D	B	B
J																	Methyl Methacrylate	＊	＊	＊	＊	＊	＊	＊	＊	＊	＊	＊	＊	D	D	D	A
Jet Fuel（JP\＃，JP4，JP5）	A	A	A	＊	＊	A	＊	A	A	D	D	A	A	A	D	A	Methylamine	＊	A	A	＊	＊	D	＊	＊	＊	B	＊	＊	＊	B	＊	A
K																	Methylene Chloride	A	A	A	A	A	A	C	D	A	D	D	＊	D	D	D	A
Kerosene ${ }^{2}$	A	A	A	A	A	A	A	A	A	D	D	A	A	A	A	A	Milk	A	A	A	＊	＊	C	c	A	＊	A	A	＊	A	A	A	A
Ketones	A	A	B	A	A	A	＊	D	A	D	D	A	D	D	D	C	Molasses	A	A	A	＊	＊	A	B	A	＊	B	A	＊	A	A	＊	A
L																	Mustard	A	A	B	＊	＊	B	＊	A	＊	B	A	＊	A	B	＊	A
Lacquers	A	A	A	＊	＊	A	C	＊	＊	C	A	＊	D	D	＊	A	Molasses	A	A	B	＊	＊	B	＊	＊	＊	＊	A	＊	A	A	c	A
Lacquer Thinners	＊	A	＊	A	A	＊	C	C	A	D	B	＊	＊	D	A	＊	Mustard	A	A	B	＊	＊	B	＊	A	A	＊	A	A	A	A	C	A
Lactic Acid	A	B	C	A	A	D	＊	A	A	A	A	A	B	B	B	A	N																
Lard	A	A	A	＊	＊	A	＊	A	＊	＊	A	＊	A	A	＊	A	Naptha	A	A	A	A	A	B	＊	A	A	D	A	A	A	B	D	A
Latex	A	A	A	＊	＊	A	＊	＊	＊	A	＊	＊	A	A	A	A	Napthalene	A	B	B	A	A	C	＊	D	A	D	B	A	B	D	D	A
Lead Acetate	A	A	D	A	A	C	＊	A	A	A	A	＊	D	B	A	A	Nickel Chloride	A	B	D	A	A	D	＊	A	A	A	A	＊	A	A	A	A
Lead Sulfamate	＊	＊	＊	＊	＊	＊	＊	＊	＊	＊	A	＊	A	B	D	A	Nickel Sulfate	A	B	D	A	B	C	c	A	A	A	A	＊	A	A	A	A
Ligroin ${ }^{3}$	＊	A	＊	＊	＊	A	＊	＊	＊	D	D	＊	A	A	A	A	Nitric Acid（10\％ Solution）	A	A	D	A	A	D	＊	A	A	A	A	D	A	D	B	A
Lime	A	A	c	A	＊	A	＊	A	＊	A	＊	＊	A	A	D	A	Nitric Acid（20\％ Solution）	A	A	D	A	A	D	＊	A	A	A	A	C	A	D	D	B
Lubricants	A	A	A	A	A	B	＊	A	A	＊	A	A	A	A	＊	A	Nitric Acid（50\％	A	A	D	A	A	D	＊	A	A	A	D	C	A	D	D	D
M																	Solution）																
Magnesium Carbonate	A	A	＊	＊	B	＊	＊	A	＊	A	A	＊	＊	A	A	A	Nitric Acid（Concen－ trated Solution）	D	B	B	A	B	D	D	D	A	D	D	C	B	D	D	D
Magnesium Chloride	B	B	D	A	A	B	C	A	A	A	A	A	A	A	A	A	Nitrobenzene ${ }^{2}$	A	B	C	A	B	D	＊	D	A	D	C	B	D	D	D	B
Magnesium Hydroxide	A	A	D	A	A	C	B	A	A	A	A	A	A	B	＊	A	\bigcirc																
Magnesium Nitrate	A	A	＊	A	A	＊	＊	A	A	A	A	＊	A	A	＊	A	Oils																
Magnesium Oxide	A	A	＊	＊	＊	＊	＊	＊	＊	＊	＊	＊	＊	A	A	A	Aniline	A	A	C	A	D	A	＊	D	A	D	A	＊	A	D	B	A
Magnesium Sulfate	B	A	B	A	B	B	B	A	A	A	A	A	A	A	D	A	Anise	A	A	＊	＊	＊	＊	＊	＊	＊	＊	＊	＊	＊	＊	＊	A
Maleic Acid	A	A	B	A	A	C	＊	A	A	A	C	＊	A	D	D	A	Bay	A	A	＊	＊	＊	＊	＊	＊	＊	＊	＊	＊	A	＊	＊	A
Maleic Anhydride	＊	＊	＊	＊	A	＊	＊	＊	＊	＊	＊	＊	A	D	＊	A	Bone	A	A	＊	＊	＊	A	＊	＊	＊	＊	＊	＊	A	A	＊	A
Malic Acid	A	A	C	＊	A	D	＊	A	A	＊	＊	＊	B	＊	＊	＊	Castor	A	A	A	＊	＊	A	＊	A	＊	＊	＊	＊	A	A	B	A
Mash	A	A	＊	＊	＊	A	＊	＊	＊	A	＊	＊	＊	A	＊	A	Cinnamon	A	A	＊	＊	＊	＊	＊	＊	A	＊	A	＊	D	＊	＊	A
Mayonnaise	A	A	D	＊	＊	D	＊	＊	A	A	A	＊	A	A	＊	A	Citric	A	A	＊	＊	＊	D	＊	＊	＊	＊	A	＊	A	A	＊	A
Melamine	D	D	＊	＊	＊	D	＊	＊	＊	＊	＊	＊	＊	C	＊	A	Clove	A	A	＊	＊	＊	＊	＊	＊	＊	＊	B	＊	＊	A	＊	A
Mercurie Chloride （Dilute Solution）	D	D	D	A	B	D	D	A	A	A	A	＊	A	A	A	A	Coconut	A	A	B	＊	＊	A	＊	＊	＊	＊	A	＊	A	A	A	A
Mercuric Cyanide	A	A	D	A	＊	D	＊	A	A	A	A	＊	＊	A	＊	A	Cod Liver	A	A	B	＊	＊	＊	＊	＊	＊	＊	A	＊	A	A	A	A

3N37גdydג1Od Noyıyo N \forall Nng NOII

7ヨヨlS SSJINIVIS ๖O\＆

Arsenic Plating $110^{\circ} \mathrm{F}$	＊	A	＊	A	A	＊	＊	A	A	A	A	＊	A	A	＊	
Brass Plating Regular Brass Bath $100^{\circ} \mathrm{F}$	＊	A	＊	A	A	＊	＊	A	A	A	A	＊	A	A	＊	
High Speed Brass Bath $110^{\circ} \mathrm{F}$	＊	A	＊	A	A	＊	＊	A	A	A	A	＊	A	A	＊	
Bronze Plating Copper－ Cadmium Bronze Bath R．T．	＊	A	＊	A	A	＊	＊	A	A	A	A	＊	A	A	＊	
Copper－Tin Bronze Bath $160^{\circ} \mathrm{F}$	＊	A	＊	A	A	＊	＊	D	A	A	A	＊	A	A	＊	
Platings（Cont．） Copper－Zinc Bronze Bath $100^{\circ} \mathrm{F}$	＊	A	＊	A	A	＊	＊	A	A	A	A	＊	A	A	＊	
	＊	A	＊	A	A	＊	＊	A	A	A	A	＊	A	A	＊	
Fluoborate Bath 100 ${ }^{\circ} \mathrm{F}$	＊	A	＊	D	A	＊	＊	A	A	A	A	＊	A	B	＊	
Chromium Plating Chromic－Sulfuric Bath $130^{\circ} \mathrm{F}$	＊	C	＊	A	A	＊	＊	A	A	D	A	＊	C	D	＊	
Fluosilicate Bath $95^{\circ} \mathrm{F}$	＊	C	＊	C	A	＊	＊	A	A	D	A	＊	C	D	＊	
Fluoride Bath $130^{\circ} \mathrm{F}$	＊	D	＊	C	A	＊	＊	A	A	D	A	＊	C	D	＊	
Black Chrome Bath $115^{\circ} \mathrm{F}$	＊	C	＊	A	A	＊	＊	A	A	D	A	＊	C	D	＊	
Barrel Chrome Bath $95^{\circ} \mathrm{F}$	＊	D	＊	C	A	＊	＊	A	A	D	A	＊	C	D	＊	
Copper Plating （Cyanide）Copper Strike Bath $120^{\circ} \mathrm{F}$	A	A	＊	＊	＊	＊	＊	＊	＊	＊	＊	＊				
Rochelle Salt Bath $150^{\circ} \mathrm{F}$	＊	A	＊	A	A	＊	＊	D	A	A	A	＊	A	A	＊	
High Speed Bath $180^{\circ} \mathrm{F}$	＊	A	＊	A	A	＊	＊	D	A	A	A	＊	A	A	＊	
Copper Plating（Acid） Copper Sulfate Bath R．T．	＊	D	＊	A	A	＊	＊	A	A	A	A	＊	A	A	＊	
Copper Fluoborate Bath $120^{\circ} \mathrm{F}$	＊	D	＊	D	A	＊	＊	A	A	A	A	＊	A	B	＊	
Copper（Misc．）Cop Pyrophosphate 140	＊	A	＊	A	A	＊	＊	A	A	A	A	＊	A	A	＊	
Copper（Electroless） $140^{\circ} \mathrm{F}$	＊	＊	＊	＊	＊	D	＊	A	A	A	A	＊	A	D	＊	
Gold Plating Cyanide $150^{\circ} \mathrm{F}$	＊	A	＊	A	A	C	＊	D	A	A	A	＊	A	A	＊	
Neutral $75^{\circ} \mathrm{F}$	＊	C	＊	A	A	＊	＊	A	A	A	A	＊	A	A	＊	
Acid $75^{\circ} \mathrm{F}$	＊	C	＊	A	A	＊	＊	A	A	A	A	＊	A	A	＊	
Indium Sulfamate Plating R．T．	＊	C	＊	A	A	＊	＊	A	A	A	A	＊	A	A	＊	
Iron Plating Ferrous Chloride Bath $190^{\circ} \mathrm{F}$	＊	D	＊	A	D	＊	＊	D	A	A	C	＊	A	B	＊	
Ferrous Sulfate Bath $150^{\circ} \mathrm{F}$	＊	C	＊	A	A	＊	＊	D	A	A	A	＊	A	A	＊	
Ferrous Am．Sulfate Bath $150^{\circ} \mathrm{F}$	＊	C	＊	A	A	＊	＊	D	A	A	A	＊	A	A	＊	
Sulfate－Chloride Bath $160^{\circ} \mathrm{F}$	＊	D	＊	A	D	＊	＊	D	A	A	A	＊	A	B	＊	
Fluoborate Bath $145^{\circ} \mathrm{F}$	＊	D	＊	D	B	＊	＊	D	A	A	A	＊	A	B	＊	D
Sulfamate $140^{\circ} \mathrm{F}$	＊	D	＊	A	B	＊	＊	A	A	A	A	＊	A	A	＊	
Lead Fluoborate Plating	＊	C	＊	D	A	＊	＊	A	A	A	A	＊	A	B	＊	
Nickel Plating Watts Type $115-160^{\circ} \mathrm{F}$	＊	C	＊	A	A	＊	＊	D	A	A	A	＊	A	A	＊	
High Chloride 130－160F	＊	C	＊	A	A	＊	＊	D	A	A	A	＊	A	A	＊	
Fluoborate 100－170 ${ }^{\circ} \mathrm{F}$	＊	C	＊	D	A	D	＊	D	A	A	A	＊	A	B	＊	
Sulfamate 100－140 ${ }^{\circ} \mathrm{F}$	＊	C	＊	A	A	＊	＊	A	A	A	A	＊	A	A	＊	
Electroless $200{ }^{\circ} \mathrm{F}$	＊	＊	＊	＊	＊	＊	＊	D	A	D	D	＊	A	D	＊	B
Rhodium Plating $120^{\circ} \mathrm{F}$	＊	D	＊	D	D	＊	＊	A	A	A	A	＊	A	A	＊	

	304 STAINLESS STEEL			$\stackrel{\sum}{\sum}$	$\begin{aligned} & \text { u } \\ & \text { 을 } \\ & \text { 쏜 } \end{aligned}$	$\begin{aligned} & \text { 山 } \\ & \text { Z } \\ & \text { O} \end{aligned}$	$\underset{\substack{\infty}}{\tilde{\sim}}$		$\begin{aligned} & \text { Z } \\ & \text { 른 } \end{aligned}$			$\begin{aligned} & \text { Z } \\ & \text { O } \\ & \text { y } \\ & \text { 안 } \end{aligned}$	$\begin{aligned} & \text { z } \\ & \text { 윽 } \end{aligned}$	$\underset{\sim}{\underset{\infty}{z}}$					$\begin{aligned} & \sum_{\sum}^{\sum} \\ & \sum_{3}^{\sum} \end{aligned}$	$\begin{aligned} & \sum_{\sum}^{\sum} \\ & \underset{k}{\mathbb{k}} \end{aligned}$	$\begin{aligned} & \text { u } \\ & \text { 흘 } \\ & \text { 픈 } \\ & \text { 区 } \end{aligned}$	$\begin{aligned} & \text { 㞱 } \\ & \text { O } \\ & \text { © } \end{aligned}$	$\underset{\substack{\tilde{\omega} \\ \underset{\sim}{u}}}{\substack{n}}$		$\begin{aligned} & \text { Z } \\ & \text { O } \\ & \text { 릅 } \end{aligned}$	$\begin{aligned} & \text { y } \\ & 0 \\ & \mathbf{Z} \end{aligned}$		$\begin{aligned} & \text { Z } \\ & \text { O } \\ & \text { 쓴 } \\ & \text { 아 } \end{aligned}$	$\begin{aligned} & \text { Z } \\ & \frac{0}{5} \end{aligned}$	$\begin{aligned} & \mathbf{Z} \\ & \underset{\sim}{\nwarrow} \end{aligned}$	
Silver Plating 80－120 ${ }^{\circ}$	＊	A	＊	A	A	＊	＊	A	A	A	A	＊	A	A	＊	Potassium Chromate	A	A	＊	＊	＊	＊	＊	＊	＊	＊	＊	＊	A	A	＊
Tin－Fluoborate Plating $100^{\circ} \mathrm{F}$	＊	C	＊	D	A	＊	＊	A	A	A	A	＊	A	B	＊	Potassium Cyanide	A	A	A	＊	＊	A	＊	＊	＊	A	＊	＊	A	A	＊
Tine－Lead Plating $100^{\circ} \mathrm{F}$	＊	C	＊	D	A	＊	＊	A	A	A	A	＊	A	B	＊	Solutions	D	D	D	A	B	D	＊	A	A	A	A	＊	A	A	A
Zinc Plating Acid Chloride $140^{\circ} \mathrm{F}$	＊	D	＊	A	D	＊	＊	A	A	A	A	＊	A	A	＊	Potassium Dichromate Potassium Ferrocyanide	＊	A	－	A	A	＊	＊	A	A	A ＊	＊	＊	A	A C	＊
Acid Sulfate Bath 150 ${ }^{\circ}$	＊	C	＊	A	A	＊	＊	D	A	A	A	＊	A	A	＊	Potassium Hydroxide	A	A	A	＊	＊	B	＊	A	A	A	＊	＊	A	A	＊
Platings（Cont＇d）Acid Fluoborate Bath R．T．	＊	＊	＊	D	＊	＊	＊	A	A	A	A	＊	A	B	＊	（50\％）	A	A	B	A	A	C	C	A	A	A	D	＊	A	B	B
Alkaline Cyanide	＊	＊	＊	A	A	＊	＊	A	A	A	A	＊	A	A	＊	Potassium Nitrate	A	A	A	A	A	A	A	A	A	D	D	A	A	B	D
Bath R．T． Potash	A	＊	C	＊	A	C	＊	A	＊	A	A	＊	A	A	＊	Potassium Permanganate	A	A	A	＊	＊	A	＊	＊	A	A	＊	＊	B	D	D
Potassium Bicarbonate	A	＊	C	A	B	B	＊	A	A	A	A	A	A	A	＊	Potassium Sulfate	A	A	A	＊	A	A	＊	＊	A	A	A	＊	A	A	＊
Potassium Bromid	A	＊	C	A	B	C	＊	A	A	A	A	C	A	A	A	Potassium Sulfide	C	C	B	＊	A	C	＊	＊	＊	＊	A	＊	＊	＊	＊
Potassium Carbonate	A	＊	C	A	A	C	＊	A	A	A	A	A	A	B	＊	Propane（Liquified）	D	D	D	＊	＊	c	D	A	A	A	D	＊	A	D	D
Potassium Chlorate	A	A	B	A	B	B	＊	A	A	A	A	A	A	A	＊	Propylene Glycol	A	A	A	A	B	B	＊	D	A	D	D	A	D	D	A
Potassium Chloride	A	A	B	A	A	C	C	A	A	A	A	A	A	A	A	Pyridine	A	A	A	＊	A	A	C	D	A	＊	＊	＊	D	＊	＊
Potassium Chromate	＊	B	A	＊	B	A	＊	A	＊	A	＊	A	A	A	＊	Pyrogallic Acid	A	C	A	＊	＊	B	＊	A	A	D	＊	＊	A	D	B
Potassium Cyanide							＊									R															
Solutions	A	B	D	A	A	D	＊	A	A	A	A	A	B	A	A	Rosins	A	A	A	＊	B	A	C	＊	A	＊	A	＊	＊	A	＊
Potassium Dichromate	A	A	A	A	B	C	＊	A	A	A	A	A	B	A	A	Rum	A	＊	＊	＊	＊	＊	＊	A	＊	A	A	＊	A	A	＊
Potassium Ferrocyanide	A	＊	C	＊	B	A	＊	A	A	＊	＊	＊	＊	D	＊	Rust Inhibitors	A	＊	＊	＊	＊	A	＊	＊	＊	＊	A	＊	A	A	＊
Potassium Hydroxide （50\％）	B	B	D	C	A	D	D	A	A	A	A	A	D	B	A	S															
Potassium Nitrate	A	B	B	A	B	B	＊	A	A	A	A	c	B	A	A	Salad Dressing	A	＊	B	＊	＊	B	＊	A	＊	A	A	＊	A	A	＊
Potassium Permanganate	A	B	B	B	B	B	＊	A	A	A	B	A	B	A	＊	Sea Water	A	C	C	A	＊	C	＊	A	A	A	A	＊	A	A	A
Potassium Sulfate	A	B	A	A	A	B	B	A	A	A	A	A	A	A	A	Shellac（Bleached）	A	＊	A	＊	＊	A	B	＊	A	＊	A	＊	＊	A	＊
Potassium Sulfide	A	＊	B	＊	B	B	＊	A	A	＊	＊	＊	＊	A	＊	Shellac（Orange）	A	＊	A	＊	＊	A	C	＊	A	＊	A	＊	＊	A	＊
Propane（Liquified）${ }^{2}$	A	＊	A	＊	＊	A	A	D	A	D	D	＊	A	A	D	Silicone	B	＊	B	＊	＊	A	＊	＊	＊	A	A	＊	A	A	A
Propylene Glycol	B	＊	A	＊	＊	B	＊	＊	A	＊	＊	＊	A	A	＊	Silver Bromide	C	C	D	＊	＊	＊	＊	＊	＊	A	＊	＊	＊	＊	＊
Pyridine	C	＊	B	＊	＊	＊	＊	＊	A	D	B	A	D	D	B	Silver Nitrate	A	B	D	A	A	D	＊	A	A	A	A	＊	A	C	C
Pyrogallic Acid	A	A	B	＊	A	B	＊	A	A	＊	＊	＊	A	A	＊	Soap Solutions	A	A	C	A	B	B	B	B	A	A	A	A	A	B	c
Electroless $200^{\circ} \mathrm{F}$	A	B	D	A	A	C	D	A	A	A	A	B	D	D	＊	Soda Ash（See Sodium Carbonate）															
Rhodium Plating $120^{\circ} \mathrm{F}$	A	D	D	A	B	C	D	A	A	A	A	B	B	D	＊	Sodium Acetate	A	A	B	A	A	B	＊	A	A	A	A	＊	D	D	＊
Silver Plating 80－120 ${ }^{\circ} \mathrm{F}$	C	c	C	A	A	D	D	A	A	A	D	C	A	C	B	Sodium Aluminate	＊	＊	C	B	B	B	＊	＊	A	A	＊	A	A	A	A
Tin－Fluorobate Plating	＊	A	D	A	A	D	＊	A	A	A	A	C	B	B	＊	Sodium Bicarbonate	A	A	A	A	＊	B	A	A	A	A	A	A	A	A	A
$100^{\circ} \mathrm{F}$	A	A	D	＊	＊	D	＊	＊	A	＊	＊	＊	＊	＊	＊	Sodium Bisulfate	A	＊	D	B	B	C	C	A	A	A	A	A	B	A	＊
Tin－Lead Plating $100^{\circ} \mathrm{F}$	＊	A	A	＊	＊	C	C	＊	A	＊	D	＊	A	A	A	Sodium Bisulfate	A	＊	A	A	B	C	＊	A	A	A	A	A	A	A	＊
Zinc Plating	＊	A	B	＊	＊	B	＊	＊	A	＊	＊	＊	A	A	＊	Sodium Borate	A	＊	C	＊	A	A	＊	C	A	＊	＊	＊	A	＊	＊
Acid Chloride $140^{\circ} \mathrm{F}$	A	A	A	A	B	B	C	A	A	A	A	＊	D	C	A	Sodium Carbonate	A	B	C	A	A	B	B	A	A	A	A	A	A	A	A
Acid Sulfate Bath $150^{\circ} \mathrm{F}$	＊	C	B	＊	＊	C	C	＊	A	A	A	＊	A	B	A	Sodium Chlorate	A	＊	B	A	B	B	＊	A	A	A	A	A	A	D	＊
Acid Fluorobate Bath RT	A	A	C	＊	B	C	C	A	A	＊	＊	＊	A	C	A	Sodium Chloride	A	C	C	A	A	B	C	A	A	A	A	A	A	A	A
Alkaline Cyanide Bath R T	A	A	D	A	A	C	＊	＊	A	A	＊	＊	A	A	A	Sodium Chromate Sodium Cyanide	A	A $*$	D	A	B	B	D	A	A	A	A	A A	B	A A	A
Potash	A	B	C	A	B	C	C	A	A	A	A	＊	A	A	A	Sodium Fluoride	C	＊	C	A	A	C	＊	D	A	＊	＊	＊	B	D	＊
Potassium Bicarbonate	A	A	B	A	B	B	B	A	A	A	A	A	A	A	A	Sodium Hydrosulfite	＊	＊	A	＊	A	C	＊	C	A	＊	＊	＊	A	＊	＊
Potassium Bromide Potassium Carbonate	A	B	D	A	B	D	D	A	A	A ＊	A $*$	A $*$	A	C	A $*$	Sodium Hydroxide (20\%)	A	A	D	A	A	C	D	A	A	A	A	A	A	A	
Potassium Chlorate	＊	A	＊	＊	＊	＊	＊	A	＊	A	＊	＊	A		＊	Sodium Hydroxide （50\％Solution）	A	B	D	A	A	C	D	A	A	A	A	B	D	D	＊

	304 STAINLESS STEEL	316 STAINLESS STEEL	$\begin{aligned} & \sum_{1}^{\sum} \\ & \sum_{3}^{\sum} \end{aligned}$	$\stackrel{\sum}{\sum}$	$\begin{aligned} & \text { u } \\ & \text { 흐를 } \\ & \text { 포 } \end{aligned}$	$\begin{aligned} & \text { 山 } \\ & \mathbf{Z} \\ & \mathbf{O} \\ & \mathbf{0} \end{aligned}$	~		$\begin{aligned} & \text { Z } \\ & \text { 분 } \\ & \text { H } \end{aligned}$	$\begin{aligned} & \text { 12 } \\ & \text { O } \\ & \text { Z } \end{aligned}$			$\begin{aligned} & z \\ & \hline \mathbf{O} \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\infty}{z} \\ & \underset{\sim}{4} \end{aligned}$					$\begin{aligned} & \sum_{2}^{\sum} \\ & \sum_{3}^{2} \end{aligned}$			$\begin{aligned} & \text { 山 } \\ & \text { Z } \\ & \mathbf{O} \\ & \boldsymbol{\infty} \end{aligned}$	$\underset{\sim}{\tilde{\infty}}$		$\begin{aligned} & \text { Z } \\ & \text { 을 } \\ & \text { 르N } \end{aligned}$	$\begin{aligned} & \text { Z } \\ & \text { O} \\ & \text { Z } \end{aligned}$		$\begin{aligned} & Z \\ & \text { O } \\ & \text { g } \\ & \text { O } \end{aligned}$	$\begin{aligned} & z \\ & \hline \frac{0}{5} \end{aligned}$	$\underset{\sim}{\underset{\sim}{2}}$	
Sodium Hydroxide		D	D	A	B		D	A	A			B	B	D	*	Tolvene, Toluol ${ }^{3}$	A	A	A	A	A	A	A	D	A	D	D	A	C	D	D
(80\% Solution)	A	D	D	A	B	c	D	A		A	A					Tomato Juice	A	A	A	*	*	C	*	*	A	A	A	A	A	A	*
Sodium Hypochlorite (to 20\%)	C	C	C	A	A	D	D	A	A	A	D	C	A	C	B	Trichlorethane	C	A	C	A	A	C	*	*	A	D	*	*	A	D	D
Sodium Hypochlorite	*	A	D	A	A	D	*	A	A	A	A	C	B	B	*	Trichlorethylene ${ }^{2}$	A	A	B	A	A	B	A	D	A	D	D	C	A	D	D
Sodium Hyposulfate	A	A	D	*	*	D	*	*	A	*	*	*	*	*	*	Trichloropropane	*	A	*	*	*	A	*	*	*	D	*	*	A	A	*
Sodium Metaphosphate2	*	A	A	*	*	C	C	*	A	*	D	*	A	A	A	Tricresylphosphate	*	A	*	B	A	A	*	D	A	A	*	*	B	D	A
																Triethylamine	*	*	*	*	*	A	*	A	*	B	*	*	A	A	*
Sodium Metasilicate	*	A	B	*	*	B	*	*	A	*	*	*	A	A	*	Turpentine ${ }^{3}$	A	A	C	*	A	B	C	A	A	D	B	A	A	D	D
Sodium Nitrate	A	A	A	A	B	B	C	A	A	A	A	*	D	C	A																
Sodium Perborate	*	C	B	*	*	C	C	*	A	A	A	*	A	B	A	U															
Sodium Peroxide	A	A	C	*	B	C	C	A	A	*	*	*	A	C	A	Urine	A	A	B	*	*	C	*	A	*	A	A	*	A	A	A
																v															
Sodium Polyphosphate (Mono, Di, Tribasic)	A	A	D	A	A	C	*	*	A	A	*	*	A	A	A	Vegetable Juice	A	A	A	*	*	C	*	*	*	A	*	*	A	A	*
Sodium Silicate	A	B	C	A	B	C	C	A	A	A	A	*	A	A	A	Vinegar	A	A	D	A	A	B	B	A	A	A	C	*	A	*	*
Sodium Sulfate	A	A	B	A	B	B	B	A	A	A	A	A	A	A	A	Varnish (Use Viton ${ }^{\otimes}$ for Aromatic)	A	A	A	*	*	A	B	*	A	D	A	*	A	B	*
Sodium Sulfide	A	B	D	A	B	D	D	A	A	A	A	A	A	C	A	W															
Sodium Sulfide	C	C	C	A	A	C	*	A	A	*	*	*	A	A	*																
Sodium Tetraborate	*	A	*	*	*	*	*	A	*	A	*	*	A	A	*	Water, Acid, Mine	A	A	C	*	*	C	D	A	*	A	A	B	A	A	*
Sodium Thiosulphate ("Нуро")	A	A	B	A	*	D	D	A	A	A	A	A	A	B	A	Water, Distilled, Lab Grade 7	A	A	B	*	*	A	*	A	A	A	A	A	A	A	A
Sorghum	A	A	*	*	*	*	*	*	*	*	*	*	A	A	*	Water, Fresh	A	A	A	*	*	A	C	A	A	A	A	A	A	A	A
Sors	A	A	A	*	*	A	*	*	*	A	*	*	A	A	*	Water, Salt	A	A	B	*	*	B	C	A	*	A	A	A	A	A	A
																Weed Killers	A	A	C	*	*	C	*	*	*	*	*	*	A	B	*
Stannic Chloride	D	D	D	A	B	D	*	A	A	A	A	*	A	A	A					*		*	*	*	*	*	*	*			
Stannic Fluoborate	*	A	*	*	*	*	*	*	*	A	*	*	A	A	*	Whey	A	A	B	*	*	*	*	*	*	*	*	*	A	A	*
Stannous Chloride	D	C	D	A	A	D	*	A	A	*	*	*	B	C	*	Whiskey \& Wines	A	A	D	*	*	B	B	A	A	A	A	*	A	A	A
				*	*		*				*	*			*	White Liquor (Pulp Mill)	A	A	*	*	A	D	*	A	A	A	A	*	A	A	*
Starch Stearic Acid ${ }^{2}$	A	A A	A B	A	A	B	C	A A	A A	A A	D	*	A	A B	*	White Water (Paper Mill)	A	A	*	*	*	A	*	*	*	*	A	*	A	*	*
Stoddard Solvent	A	A	A	A	A	A	A	A	A	D	D	A	A	B	D	x															
Styrene	A	A	A	*	*	A	*	*	A	A	*	*	B	D	D	Xylene ${ }^{2}$	A	A	A	*	A	A	A	D	A	D	D	A	A	D	D
Sugar (Liquids)	A	A	A	*	A	A	*	*	A	A	A	*	A	A	*	Z															
Sulfate Liquors	C	C	B	*	A	C	*	*	*	*	A	*	*	*	*	Zinc Chloride	D	B	D	A	B	D	D	A	A	A	A	A	A	A	A
Sulfur Chloride	D	D	D	*	*	C	D	A	A	A	D	*	A	D	D	Zinc Hydrosulphite	*	A	D	*	*	D	*	*	*	A	*	A	*	A	A
Sulfur Dioxide ${ }^{2}$	A	A	A	A	B	B	*	D	A	D	D	A	D	D	A	Zinc Sulfate	A	A	D	A	B	B	C	C	A	A	A	A	A	A	A
Sulfur Dioxide (dry)	A	A	A	*	A	A	c	D	A	*	*	*	D	*	*																
Sulfur Trioxide (dry)	A	C	A	*	*	B	*	A	A	D	*	*	A	D	B																
Sulfuric Acid (to 10\%)	D	C	*		A	*	D	A	*	A	A	A	A	*	*																
Sulfuric Acid 10\%-75\%	D	D	*	*	B	*	D	A	*	B	A	B	A	*	*																
Sulfuric Acid 75\%-100\%	*	D	*	*	B	*	D	B	*	A	B	C	A	*	*																
Sulfurous Acid	C	B	*	*	B	*	*	A	*	A	A	*	A	*	B																
Sulfuryl Chloride	*	*	*	*	*	*	*	A	*	*	*	*	*	*	*																
Syrup	A	A	*	*	*	*	*	A	*	A	A	*	A	*	*																
T																															
Tallow	A	A	A	*	*	*	*	*	*	A	*	*	A	A	*																
Tannic Acid	A	A	C	A	B	B	*	A	A	A	A	*	A	D	A																
Tanning Liquors	A	A	C	A	A	A	*	A	A	*	A	*	A	C	*																
Tartaric Acid	A	B	C	A	B	A	C	A	A	A	A	*	A	D	*																
Tetrachlorethane	*	A	*	A	A	*	*	D	A	D	A	*	A	D	D																
Tetrahydrofuran	A	A	D	*	*	D	*	D	A	D	C	A	D	D	B																

